
METHODS AND TOOLS IN DESIGN PRACTICE 229

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2006
Dubrovnik - Croatia, May 15 - 18, 2006.

USING MULTIPLE DESIGN STRUCTURE MATRICES

M. Eichinger, M. Maurer and U. Lindemann

Keywords: design structure matrix, product model, design process

1. Introduction
In product development, multiple aspects of engineering design methodology are integrated and
interact with each other. For example, functions depend on components that realize these functions,
and features of a product depend on product functions. The different aspects of product development
are called “domains” in the following. To depict and optimize the structure of these domains, different
methods have been developed. The Design Structure Matrix (DSM) [Steward 1981] is applied to
structure-, task-, organization-, and parameter analysis [Browning 2001] and offers methods [Baldwin
& Clark 2000; Kusiak 1999] for a concise visualization of complex network structures. However, the
existing approaches are lacking a holistic view onto the domains of product design as they consider
the domains only independent from each other, e.g. only components and their relations are modeled
in a DSM. A method that relates two different domains (for example components and functions) is
given by the Domain Mapping Matrix (DMM) [Danilovic & Browning 2004] or the K&V-Matrix
[Bongulielmi et al. 2001]. However, these approaches are limited to two domain combinations only.
Other important methodologies that use interdomain-matrices are Axiomatic Design [Suh 2001], QFD
[Hauser & Clausing 1988]. Some of the methodologies (element-level matrices) are classified in
Malmqvist [2002] into intra- and inter-domain matrix methodologies. We adapt this specification to
define the Multiple Design Structure Matrix that integrates intra- and inter-domain matrices. This
methodology offers the possibility to analyze sets of multiple domains and derive further insight into
the engineering design process by evaluating cross-domain relations. Although the coherent
representation form offers new benefits for product design optimization, it also leads to big matrices
that have to be filled and analyzed. To avoid costly filling processes and tedious matrix analysis, we
developed an algorithm that points out important dependencies within the matrix and helps the
designer to identify important parts in a MDSM using cross-domain relations between the different
MDSM domains. First, we briefly describe the MDSM methodology for product design optimization
and then present an algorithm for the evaluation of the cross-domain relations.

2. Combining Multiple Product Design Domains
Figure 1 shows a general MDSM structure, consisting of a symmetric alignment of elements on both
axes and element groups of different domains. This formation causes sub-matrices of DSM and DMM
types. The sub-matrices aligned along the MDSM diagonal are DSMs, the sub-matrices in the upper
and lower triangular of the MDSM are consequentially DMMs. In a MDSM, bidirectional
relationships are modeled, that is, the matrices in the upper and lower triangular of the MDSM do not
necessarily contain the same information. For isolated matrices, analysis algorithms exist, e.g.
partitioning, clustering or loop identification for DSM structures [Baldwin & Clark 2000; Kusiak
1999]. Analyzing the connectivity of isolated structure-, task-, organization-, or parameter-matrices
may offer valuable insight; however, most of the problems in engineering design are multidisciplinary

 METHODS AND TOOLS IN DESIGN PRACTICE 230

problems that have to be addressed as a whole. So far, no algorithms exist for a holistic analysis of the
integrated domains in MDSM structures.
To enable such an analysis, a set of product design domains has to be defined first. The following set
has turned out to be useful for MDSM optimization as it covers a broad range of product design
elements:

• Components (assemblies or parts of a product that are decomposed to a defined level of detail)
• Functions (desired or non-desired behavior of the product, assemblies or components)
• Parameters (settings that usually apply directly to components)
• Resources (objects and people needed to develop the product)
• Tasks (specific, definable activities to perform an assigned piece of work, often finished

within a certain time)
In practice, the set of domains for MDSM analysis has to be adapted to the specific problem the
designer has to examine. However, we used this set of domains during several MDSM optimization
procedures and found that it is appropriate for most problems in engineering design, as it integrates
multiple views onto the problem. Additional research is needed to examine the implications of
hierarchical dependencies across multiple domains (i.e. what implications have to be considered along
a development chain such as requirements-functions-specification-components-parameters-tasks). So
far, the MDSM is intended to depict and optimize the as-is-state of a product development issue.

Figure 1. Integrating multiple domains into one MDSM

The MDSM contains all intra- and inter-domain relations between the included domains. For example,
the mutual relations between components and functions are modeled in the components-functions
(directed impact from components to functions) matrix and the functions-components (directed impact
from functions to components) matrix. For each domain combination two matrices exist that represent
the directed relation between these domains. The MDSM relations (the content of the MDSM) are not
necessarily symmetrical to the diagonal of the matrix, even if some sub-matrices may be symmetrical
(a matrix that describes physical relations between components, for example, is always a symmetrical
matrix due to the principle that actio equals reactio). The aggregation of the product domains in a
MDSM offers new possibilities of interdependency analysis between the domains. These have not

METHODS AND TOOLS IN DESIGN PRACTICE 231

been considered so far in method based matrix handling. Analyzing and visualizing these
interdependencies is quite important, as these cross-relations may be the reason for undesired or
unpredictable product or process behavior. The cross-relations mostly span one domain (for example,
two people are related through a common component they work on). In the following, we propose an
approach for evaluating these cross-domains relations.

3. Multi-Domain Product Design Analysis

3.1 Problem description
Only direct relations are allowed in a DSM in order to receive helpful information. These relations are
usually obtained during one or several team workshops. Experiences with matrix filling processes
indicate that the distinction between indirect and direct relations is a huge problem in the perception of
product design structures. Indirect relations are defined as relations that are caused through a
dependency chain that spans one or more elements.

Figure 2. Direct and indirect relations between matrix elements

Team members that take part in a matrix filling process often are not able to distinct between direct
and indirect relations, as the underlying structure is intuitively known (mostly by experience) or
largely unknown. A chain that spans one or more elements (figure 2) may lead to a false perception of
the real product structure. The designer may only know that two elements are “somehow” related and
therefore place the mark in the wrong matrix cell (see figure 2) to avoid the detour over the
intermitting element. Finally, the captured matrix structure would not represent the real structure and
therefore the quality of analyses would decrease.
With multiple domains, this problem gets even worse, as indirect relations may also be caused through
relations across different domains of the matrix. These indirect relations are even harder to identify,
because the designer has to compare different contexts and meanings of elements. However, multiple
domains also offer new possibilities for the analysis of cross-domain relations. We found that these
domain-spanning indirect relations are very important in practice, as they are responsible for the
distinction between direct and indirect relations within a domain. The team that conducts the MDSM
analysis may e.g. see a direct relation between two persons if there are many other elements
connecting these persons (like common components, common tasks or common data resources). The
same team may, however, deny a direct relation between the persons if there is e.g. only one
unimportant data resource these persons share. The here presented algorithm offers the possibility to
focus on important elements within the matrix that are connected through multiple other matrix
elements.
Another problem with DSM and MDSM analysis is the size of the matrices. MDSMs can get very big
if several domains are integrated into a single matrix. Given a MDSM with five domains and ten
elements per domain, the MDSM is a 50x50 matrix with 2,450 relations to be evaluated. If used
during a matrix filling process, the here presented algorithm is able to visualize important relations
and helps the team filling the matrix more quickly.

 METHODS AND TOOLS IN DESIGN PRACTICE 232

3.2 Calculation algorithm
For accessing information about direct and indirect linking, we propose an algorithm that uses data
already stored in the matrices in order to determine the indirect relations between elements. These
indirect relations may then be visualized to help the designer identifying relations that should be
checked more precisely. We only consider indirect relations that span one element (like in the example
in figure 2). Of course, longer chains of indirect interdependencies exist; however, information gain
for designers is not relevant as they cannot perceive longer chains of elements properly due to the high
density of interrelations in common structures.
The analysis process we propose is called “AID-Process” (Analyzing Indirect Dependencies-Process).
The algorithm determines the indirect relations between two elements of the same or different
domains by using the adjacent matrices that compose the MDSM. These indirect dependencies are
then visualized and help the designer identifying dependencies between elements that are caused
through indirect relations in other domains. This visualization can help a designer to speed up the
matrix filling process and to ease the identification of important matrix elements. If for example the
indirect relations between components and functions are to be evaluated, the matrices of interest are
the components-parameters and parameters-functions matrices (figure 3). The AID-Process is merely
used for the analysis of existing specifications, products and processes. It is therefore not necessary to
sort the domains according to an overall logic or abstraction level, as it is not intended to obtain for
example a task sequence from a requirement-, functions- or components-structure.

Figure 3. Exemplary sources for the evaluation of indirect relations

Depending on the total number of domains, there may be more than one matrix pair to be evaluated.
Taking the suggested domains from above (components, functions, parameters, resources, and tasks),
there would be also the components-resources and components-tasks pairs that contain cross-domain
relations. The AID-Process can be executed in filled and partly filled MDSMs and proceeds as
depicted in figure 4.

Figure 4. AID-Process

METHODS AND TOOLS IN DESIGN PRACTICE 233

The process starts with selecting the MDSM sub matrix (representing e.g. a product from a specific
domain view) that is to be evaluated. In a second step, the adjacent sub-matrix pairs that act as the
source for the evaluation of indirect relations are determined. If for example the components-functions
matrix has been selected for evaluation, a possible adjacent matrix pair is the components-tasks and
tasks-functions matrix. As depicted in figure 5, there is always a third domain connecting two matrices
(domain “B” in the example).

Figure 5. Combining the matrix pairs

The matrix combination can be determined according to the scheme shown in figure 6. In a MDSM
with n domains, there are (n-1) pairs selectable if an intra-domain matrix (DSM-type) is being
calculated (shown at the right side of figure 6). If an inter-domain matrix (DMM-type, left matrix of
figure 6) is determined, (n-2) pairs are selectable. In the third step of the AID-Process, the indirect
relations are calculated by multiplying the selected matrix pair. The resulting matrix contains the
number of indirect relations for each element combination of the matrix pair. This is of course only
possible if matrices are represented in a mathematically appropriate formulation, and contain only
cyphers as relation marks. It is imaginable that a matrix multiplication is also done if the relation
marks are real numbers representing the strength of the connection between the elements. However,
weighted relations will be examined closer in future work. The number of indirect relations is the
number of possible ways to connect the two elements by passing a third element (like element 2 is
inserted between elements 1 and 3 in figure 2). The total number of indirect relations is added up for
all matrix pairs (domains). For example, there may be five indirect relations between two specific
components, due to three linkages through the resources- and two linkages through the functions-
domain.

Figure 6. Selection scheme for the AID-Process

With matrix A having N rows and K columns, and matrix B having K rows and M columns, the
indirect relations can be calculated using equation 1.

 METHODS AND TOOLS IN DESIGN PRACTICE 234

{ }∑
=

⋅=
M

j 1
),(),(),(ijBjiAjiIR , Ni ,...,1= (1)

The resulting matrix IR is a new matrix with the number of indirect relations between the elements of
the sub-matrices deriving from indirect relations in matrices A and B. If for example the components-
functions and the functions-resources matrices are multiplied, the resulting matrix is a components-
resources matrix that contains the number of indirect relations for each element combination. If there
is more than one way to connect a component and a resource using a function, there may be more than
one indirect relation indicated in the matrix field.
The process is repeated if more matrix pairs are to be calculated (see the selection scheme in figure 6).
To get the total number of indirect relations, all resulting matrices are added up. In a MDSM with N
domains, the total number of indirect relation can be calculated using equation 2.

{ }∑
=

=
N

i
i

1
IRI (2)

We do not distinguish between different origins of indirect relations. For example, there is no
difference between an indirect relation caused through a common component and an indirect relation
caused through a common parameter setting. We plan to extend the AID algorithm to weight different
origins of indirect relations to better identify critical relations in the matrix.
We identified three fundamentally different output scenarios from applying the AID-process. There
may be a multitude of indirect relations or only few indirect relations; unusual but possible are no
indirect relations between the domain elements.
If there are proportionally many indirect relations between two specific elements, there are many
different ways to establish an indirect connection (i.e. a connection through another element) between
them. In this case, a designer may also identify a direct relation between these elements. However,
there may or may not be a direct relation “in reality”, depending on the context of the elements. If two
components possess many indirect relations (through parameters, functions, resources, or tasks), the
two elements are likely to be “somehow” related to each other. The designer has to decide if there is
really a direct relation - and the AID-process calls his attention to the important cells of the matrix.
Proportionally few indirect relations indicate that there are only few ways to connect two elements.
However, in a matrix of average density, the dense mesh of relations between elements causes a large
quantity of indirect relations. In fact, nearly every element is connected through at least some indirect
relations. That is why the case of few indirect relations between elements has little saying for MDSM
analysis.
Some elements of the matrix may not be related indirectly at all, i.e. there is no way to connect these
elements using a third one. The designer’s attention has to be called to this point, because he should
look carefully if really no indirect relations exist.
The benefit of the AID algorithm is that designers receive the opportunity to identify critical relations
within the matrix. These relations are characterized through either many (higher-than-average) or no
indirect relations. Especially in large MDSMs, it is essential to support the designer during the matrix
filling process and during MDSM analysis by highlighting important elements and reducing the
complexity.

3.3 Visualization of the results
We suggest not to insert the explicit number of indirect relations in the MDSM. Instead, we propose a
graphical visualization using four-fold color shading of the matrix cells to group different quantities of
indirect relations. The following thresholds relative to the maximum quantity of indirect relations have
turned out to be useful to distinct the three MDSM analysis scenarios:

• Darkest shading: [100%-80%]
• Medium shading:]80%-40%]
• Light shading:]40%-0%[

METHODS AND TOOLS IN DESIGN PRACTICE 235

• White: - no indirect relation -
An exemplary matrix with shading (DMM type) is depicted in figure 7. The dark fields in the matrix
therefore contain many indirect relations, i.e. there are many ways to establish an indirect connection
between both elements through other element dependencies. If the dark-shaded fields also contain a
mark (here: “1”), a direct relation between the elements exists.

Figure 7. Example matrix with visualized indirect relations

The color shading helps the designer to identify important fields within the MDSM. Important fields
are those containing many indirect relations. As already mentioned, the matrix filling process is time-
consuming. AID can be used during a matrix filling process to speed up the process. If AID is used in
this way, it can help designers to fill the matrix more quickly and more reliably, because important
interdependencies are highlighted. AID may also be used as an analysis tool for filled matrices, as it
depicts the relations that are important due to cross-domain interrelations. In addition, possible failures
in a matrix can become apparent. There may for example be fields with many indirect relations (dark-
shaded fields), but no direct relation. In this case, a designer should carefully look at these elements,
as they may be directly related. There may also be fields with no indirect, but only a direct relation.
These relations are isolated and do not belong to a block of elements. However, they may connect two
blocks.

4. Conclusions and Further Work
The AID optimization process has been applied to multiple real-world examples to test the robustness
and usability of the algorithm. Matrix sizes varied from 10 to 50 elements. We found that the quantity
of indirect relations depends strongly on the density of the matrix. That is why it is important to use
dynamic thresholds to identify fields with many indirect relations. The main advantage of the AID-
algorithm is the quick visualization of important matrix areas and element relations. Using this
visualization during a matrix filling process showed that indirect dependencies can be made clear to
the team members more easily. However, to prove the assumption that many indirect relations are
likely to cause also a direct relation between elements, more examples are to be conducted. The next
research steps will therefore focus on the application of MDSM methodology and the use of AID as a
filling aid for MDSMs. In addition, we plan to combine known matrix analysis methods and the AID
algorithm to get further insight in the structure of multi-domain complex networks.

 METHODS AND TOOLS IN DESIGN PRACTICE 236

It is planned to integrate the MDSM methodology into the MOFLEPS [Maurer et al. 2005] analysis
tool for complex network structures. This tool integrates several methods for complex network
analysis and DSM analysis like clustering, partitioning or loop identification. By integrating the
MDSM methodology into the tool, we will be able to examine products and product development
processes under a holistic perspective.

References
Baldwin, C., Clark, K., “Design Rules - The Power of Modularity”, MIT Press Cambridge, Mass., 2000.
Bongulielmi, L., Henseler, O., Puls, C., Meier, M., “The K&V-Matrix Method - An Approach in Analysis and
Description of Variant Products”, Proceedings of the International Conference on Engineering Design (ICED
01), Glasgow, 2001.
Browning, T., “Applying the Design Structure Matrix to System Decomposition and Integration Problems: A
Review and New Directions”, IEEE Transactions on Engineering Management, Vol.48, No.3, 2001, pp 292-306.
Danilovic, M., Browning, T., “A Formal Approach for Domain Mapping Matrices (DMM) to Complement
Design Structure Matrices (DSM)”, Proceedings of the 6th Cambridge DSM Workshop, Cambridge, UK, 2004.
Hauser, J.; Clausing, D., “The House of Quality”, Harvard Business Review, Vol.66, No.3, 1988, pp 63-73.
Kusiak, A., “Engineering Design – Products, Processes and Systems”, Academic Press San Diego, 1999.
Malmqvist, J., “A Classification of Matrix-Based Methods for Product Modeling”, Proceedings of Design 2002,
2002, Cavtat-Dubrovnik, Croatia.
Maurer, M., Boesch, N.-O., Sheng, G., Tzonev, B., “A Tool for Modelling Flexible Product Structures -
MOFLEPS”, Proceedings of the 15th International Conference on Engineering Design (ICED’05), Samuel, S.,
Lewis, W. (Ed.), Institution of Engineers, Melbourne, 2005, (CD-ROM).
Steward, D., “The Design Structure System: A Method for Managing the Design of Complex Systems”, IEEE
Suh, N., “Axiomatic Design”, Oxford University Press Oxford, 2001.
Transactions on Engineering Management, Vol.28, No.3, 1981, pp 79-83.

Maik Maurer
Technische Universitaet Muenchen, Institute of Product Development
Boltzmannstraße 15, 85748 Garching, Germany
Tel.: +49 89 28915155
Fax.: +49 89 28915144
Email: maik.maurer@pe.mw.tum.de
URL: http:// www.pe.mw.tum.de

