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1. Introduction 
The evolutionary algorithms have come far from being just a drawing board idea or a mind concept. 
They have found applications as a problem solvers and process backbones in many intriguing fields 
such as artificial intelligence, informatics (genetic programming), mathematics, artificial life-base 
creatures, evolvable hardware etc. In engineering domains evolutionary algorithms have during the 
last fifteen years proven themselves as powerful multiple-objective optimisation tools (MOGA – 
Multiple-objective genetic algorithms, TOD – topological optimum design, FLP – floor facility layout 
etc.) but in design theory there are much less published applications [S. Vajna 2003; M. M. 
Andreasen, 2005] and their full potential there remains still very much hidden. A subgroup in field of 
evolutionary algorithms, genetic algorithms, are very applicable for describing of processes appearing 
within real world engineering design and the reasons why is that so will be discussed further in next 
chapters. At the end a case study will be presented where a functionality of a concept is reached by an 
optimisation process. 

2. Motivation for applying genetic algorithms 
When applying genetic algorithms as the problem solving techniques then we’re thinking in terms of 
search algorithms that are, in order to find solution, mimicking the notions from the evolution of the 
natural organisms. That implies that the solution or the set of solutions to the given problem evolves in 
time from the feasible solution population by the principle of the survival of the fittest.  
The merit of feasibility, or how good the potential solution solves the given problem, is being 
introduced in a form of the fitness function which then acts as an evolutionary guide. So, the standard 
engineering optimisation problem of maximizing the fitness function is being put up before the solver 
algorithm. From various literatures [D. E. Goldberg, 2003; Wood, K.L. and Otto, K.N., 1999; S. 
Wolfram, 2001] the problem of maximising the fitness function is the same as the problem of 
satisfying the list of constraints. It is obvious that here exists a resemblance between the algorithm and 
the design process. Design process itself can be described as the process of satisfying the list of input 
constraints, or process of moulding of the conflicting requirements [S. Wolfram, 2001; J. Andersson, 
2000].  
“In every generation, a new set of artificial creatures are created using bits and peaces of the fittest of 
the old; an occasional new part is tried for good measure” [P. Bentley, 1999]. From lather can be 
formulated the first of the reasons why to apply evolutionary computation rather then some other 
computation technique to a particular design stage. As it was shown the search process itself is done 
by mixing up parts of individual solutions which results in the speed up of the overall process 
(crossover operator in EA literature), and with the addition of amount of stochastic or randomness 
(mutation operator in EA literature) the algorithm property of escaping local extreme unfolds. This 
property of the genetic algorithms is adopted from the natural evolution and it is known in the EA 
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community [D. E. Goldberg, 2003; P. Bentley, 1999] as the adaptation property. Furthermore, because 
of its non gradient origins the algorithm is immune to the issues regarding the discontinuities of the 
search space and the derivability of the fitness function, which is the second very important property 
of the algorithm. Search spaces built upon customer needs and lists of requirements (like material 
strength and fatigue, vibrations, aesthetics etc.) in design processes are often discontinuous, the fitness 
functions are non derivable and multimodal and thus difficult to describe in a form of a calculus based 
algorithm within the scope of continuous mathematics.  
Innovation or findings of new ideas in human design processes is often introduced by various methods 
and techniques like brainstorming for instance [Wood, K.L. and Otto, K.N., 1999], which is really an 
attempt to produce an unbiased human performed heuristic search. The same principle exists in natural 
evolution and in that way also in genetic algorithms by mutation operators [D. E. Goldberg, 2003; P. 
Bentley, 1999] which stochastically alter feasible solutions. Until proved otherwise the evolutionary 
algorithms are as the natural evolution is still unbiased systems. 
If go further there is an analogy between evolution of the natural organisms and the human design 
process. Human designs have also evolved during the centuries, as the organisms did, and moreover 
when devising a new idea the designer is creating it by combination of some previous solutions which 
are in core the identical principles as the recombination of the genetic material of the living organisms 
[D. E. Goldberg, 2003].  
It seams that the genetic algorithms are very robust problem solving methods, which by imitating the 
principles from the evolution of natural organisms are in a way also quite similar to human design 
processes. 

3. Evolutionary design 
A human conducted design process is defined in literature as a set of technical activities within a 
product development process which often include the development of new concepts, embodiment and 
often other non managerial activities [Wood, K.L. and Otto, K.N., 1999]. From that the definition of 
the evolutionary design immediately follows as a design process that is based on the evolutionary 
computation. That kind of an iterative process is obviously best and only (nature is excluded) done by 
the computers because of their ability to process vast amounts of data in reasonable amounts of time. 
In literature [D. E. Goldberg, 2003] the field of evolutionary design is described as a mixture of 
evolutionary biology, computer science, and design. More so, if go further, the field of integral 
evolutionary design becomes very interesting for design science as it combines evolutionary design 
optimisation and creative evolutionary design [(D. E. Goldberg, 2003]. The two keywords 
optimisation and creative and their interloping are indeed the property of every good human design 
processes. As the natural evolution shapes the living organisms thus enabling them to coexist in their 
environments, so is the designer shaping and adjusting its designs enabling their existence in 
constraint bounded design space.  
Optimisation is by default a process of making better the existent which, if put in engineering 
framework, means that the process input data consists of a design model that needs to be improved 
over a set of design variables. Again, in natural world the optimisation itself is embodied in the core of 
the evolution, because the natural organisms are in a fact by optimisation improving over time [S. 
Wolfram, 2001]. That implies that a complete new good solution can emerge as the result of constant 
improving. If comparing that to the real world enterprises, the sole purpose of powerful design 
optimisation techniques is the reduction of the product production price which in end results in more 
competitive product being put to market thus creating an edge over the competition. 
There is a one very astonishing phenomenon in the evolution of the living organisms; it is their ability 
to adapt to the rapid changes in their environments. From design science literature [Wood, K.L. and 
Otto, K.N., 1999] it’s known that adaptive design is a process of adapting the existent subsystem to 
the requirements of a new product. Adaptive design is more and more present in today’s product 
development because of rapid changes in the market induced by product customization needs. Such 
designs processes bear risks because of speed in which they need to be done but if conducted carefully 
they can produce significant gains resulting maybe in creating a complete new product subsystem. 
From the evolution of the natural organisms’ point of view, the adaptation process was and still is a 
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risky business giving the endless opportunities to the ones who manage to adapt. Evolutionary 
algorithms are in fact doing the same thing by adapting the potential problem solutions through 
stochastic operators to the search environment. 
Within the creative evolutionary design according to literature [D. E. Goldberg, 2003] two fields exist; 
the field of evolutionary design on conceptual level which goal is the development of innovative 
designs concepts by evaluating fitness according to resulting functionality, and the field of generic 
evolutionary design which is a search for new design morphologies but still regarding the 
functionality. Morphology or form development is commonly related to the initial stages of design 
processes in which the performance and overall future functionality (or purpose) of the product is 
depending mainly on the physical properties of its form. That is often a case in product development 
processes in the industries like shipbuilding, aerospace industries etc. 
Function analysis of the future product is very important part of product development [G. Pahl, W. 
Beitz 1988] and is done primarily to speed up the overall process, incorporate customer needs and 
wishes as new product features, and if possible to gain from the knowledge obtained from previous 
projects. And again, the evolution of natural organisms and genetic algorithms by mimicking it are 
doing the same by reusing the genetic materials of its previous successful designs in order to create 
new better designs.  
When applying genetic algorithms in design the question regarding heuristics arises. Fore instance, is 
the derived design really concept the optimal one, is the result of optimisation the optimal one? The 
author’s thoughts about these kinds of questions regarding his practical engineering backgrounds are 
that these questions are irrelevant as long the computation process produces good and useful results. 
The notions about proving that the produced solution is really the global optimum in significantly 
large search space often surpass the boundaries of common engineering practice.  
So there is no doubt that much resemblance exists between evolutionary design [D. E. Goldberg, 
2003; P. Bentley, 1999] and the design methodologies described in engineering literature [Wood, K.L. 
and Otto, K.N., 1999], so why not thrive on  it more extensively in the modern product development 
processes? 

4. Case study 
The goal was to represent the process of conceptual design as an optimisation process, where the goal 
of fitness function is the obtaining of functionality by following a set of rules. The result of the 
conceptualisation would be represented in an early embodiment stage as a solid model assembly in 
Dassault Systems CATIA V5R16 software. By the inspiration of A-Design [M. Campbell, 1998] for 
this case study a weighting mechanism was chosen as an example. The difference between A-design 
[M. Campbell, 1998] and this case study is that here presented algorithm relies predominantly on 
genetic algorithm and that only one population (population of designs) is being mantained and 
evolved. 
Chromosomes are formed from set of predefined components. Further more to reduce the search space 
the selection methods for chromosome generation and the methods for performing crossovers are 
selected accordingly how well they generate concepts. Genetic algorithm was chosen as a drive 
algorithm because of reasons explained in previous chapters and because of its mapping properties 
(chapter 4.3). 

4.1 Components 
The components are for the sake of simplicity nonparametric and can be interconnected at their 
interfaces. Each of components has one drive and one driven interface, where the driven interface can 
connect to two components simultaneously but one of these must be elastic component. However, the 
types of the components that can be interconnected at interfaces differs accordingly to the component 
properties,  the type of motion that they can transmit that is, so within one interface there can be 
multiple interface points at which the connection could be established. So, the interface points are 
divided accordingly their purpose as drive interface points (P), driven interface points (G) and 
interface points reserved for elastic elements (O), and accordingly the type of motion they are 
transferring. 
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Gear lath (ID7) Spring (ID8) Torsion spring (ID9) 
Figure 1. Overview of nonparametric components  

The first and the last components of heuristically generated chromosomes are always the same - 
pedestal and dial (figure 1). If we take for an example Gear with shaft (figure 1), then for the input 
interface we have two drive interface points (P1) and (P2), one corresponding to gear and one to the 
shaft. So for (P1) the drive components could be gearing, gear with shaft, gear lath and dial and for 
(P2) the drive components could be shaft, gear with shaft and dial. Driven components for (G1) are 
gearing, gear with shaft and gear lath and for (G2) we have shaft, gear with shaft and dial. The (O1) 
interface is reserved for spring. 

4.2 Genotype – generating “G” methods 
The genotype is created first by random selection of components  with the constraint that the first 
component is always a pedestal and the last one is always a. Afterwards the random selection of spring 
places is performed. The length of chromosome is random and it varies within user defined boundaries 
from minimum 3 components to about 40. 
 
In figure 2 a genotype is shown constituting of interconnected components (ID), and to them 
connected springs marked with (O). There are three methods – “G” methods for generating the 
genotype one not favouring any of components, second method favouring gears and third favouring 
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levers. Later to induce the randomness these three methods produce in every generation “new blood” 
offspring by measuring how well their creations achieved functionally. So the genotype carries a 
signature of a method that created it. 

 
Figure 2. Genotype representation 

4.3 Phenotype  
The existence of mapping function in genetic algorithms was found to be very suitable for this case 
study. So if the genotype would be considered as a concept then its phonotype would be early 
embodiment which corresponds with the literature definitions of phenotype as real world 
representation of the genetic material carried in genotype [P. Bentley, 1999; D. E. Goldberg, 2003]. 
To be evaluated the genotype is mapped into genotype through mapping function. Phenotype of 
chromosome in figure 2 is presented in table 1. 

Table 1. Phenotype representation 
1 “” 1 “1.O1.O1.P1” 
2 “4.G1.3.P2” 2 “4.O1.O2.P1” 
3 “” 3 “3.O1.O2.P1” 
4 “” 4 “5.O1.O1.P1” 
5 “4.G1.4.P1”   
6 “”   
7 “6.G1.7.P2”   
8 “7.G2.3.P1”   
9 “3.G1.3.P1”   

10 “3.G2.4.P1”   
11 “”   
12 “5.G1.5.P1”   
13 “”   
14 “4.G1.2.P2”   

 
The mapping function is searching if there can be established a connection between components by 
checking it with the knowledge base of good connections [M. Campbell, 1998]. So for the strings 
number 7 and 8 if taken for example have proper connection established by driven interface point 
“7.P2” connected to the “7.G2” drive interface point. The “7” is referring to the type of component of 
gene number 8.  

4.4 Evaluation and Selection 
Evaluation of chromosomes is done on their phenotype representations by applying the following 
formula: 

onnectionspossible cnumber of 
ns connectiosuccesfullnumber of fittnes =

 

Two parents are selected for breeding by applying roulette wheel selection. There is no special matting 
pool so all of the chromosomes have the possibility in creating offspring. The effect of cloning is 
prevented with parent identity check. 
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4.5 Crossover –“C” methods and Mutation 
Each two parents that are selected for matting produce two offspring, but one of them always dies by 
selection of a random coin toss. This was done to enhance the randomness. The chromosomes are not 
identical in size so the crossover point is determined randomly on a chromosome with shorter 
genotype. There’re three types of crossovers – “C” methods: one point, two point and three point 
crossovers (figure 3). 

 
Figure 3. Two point crossover 

Which type of crossover is to be performed is at first defined with same probability of p = 0.33. Later 
in process the probability alters by measuring how well their creations have achieved functionally. So 
the genotype carries the signature of crossover method that created it. Again we have three types of 
mutations: the mutation of components, the mutation of springs and combined mutation of the both. 
The selection of method is performed pure stochastically with probability of 0.33. On figure 4 the 
third type of mutation is presented, where a mutation of component is done to a randomly altering the 
gene value thus replacing the components. The mutation of spring is done by random exchange of its 
place. 

 
Figure 4. Mutation example 

4.6 Algorithm and visualisation 
The initial population generated is user defined and it usually consists of 20 – 30 chromosomes. The 
structure of algorithm is shown below: 
 

Start 
Initialisation – generation of population with equal start probability for all “G” methods 
Evaluation – of initial population 
Loop  
  Selection – roulette wheel selection of parents 
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  Matting – crossover with equal start probability for all “C” methods 
Mutation – mutation of offspring with 1% probability with equal probability 
of mutation method selection through whole process 
Evaluation – with mapping of offspring 
- Putting the functional concepts in temporary functional concepts 

collection (when fitness is equal 1.00). 
- Putting the functional concepts that are not identical in final functional 

concepts collection. 
New generation – because of elitism 3 concepts make to new generation by 
random selection from final functional concepts collection.  Further more first 
5 non-functional concepts are also allowed to live on. To induce randomness 
user defined number of completely new chromosomes is directly generated by 
“G” methods and added to population. Rest of free spaces is populated with 
the best offspring members. 
Evaluation – of new generation 
- Updating the probabilities for selection of “C” and “G” methods 

accordingly the fitness of chromosomes they created. 
Visualisation - of final functional concepts (user option) 

Repeat until the condition is satisfied 
Visualisation - of final functional concepts (user option) 
End 
 

The phenotypes where visualised in Dassault Systems CATIA V5R16 software (figure 5). 
 

 
 

Figure 5. Phenotype visualization  

5. Conclusion and future work 
In the case study it was shown that the process of conceptual design could be presented as an 
optimisation process where by following the set of rules for proper connecting and by utilising the 
inventiveness of evolutionary computation it is possible to create a fully functional weighting 
mechanism. More so if taken into account the definition of human conducted design process as the 
process of satisfying the list of input constraints, or process of moulding of the conflicting 
requirements [S. Wolfram, 2001; J. Andersson, 2000] which is the same as the problem of maximising 
the fitness function [D. E. Goldberg, 2003; Wood, K.L. and Otto, K.N., 1999; S. Wolfram, 2001] then 
it was shown that there truly exists resemblance between evolutionary design process and the human 
performed design process. That implies that evolutionary algorithms and especially genetic algorithm 
present suitable basis for creation of design tools which should aid designer in conception phases of 
design processes. 
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Future work will include the development of automated tools for conceptual designs with parametric 
components including energy, material and signal flow concepts [G. Pahl, W. Beitz, 1988], 
topological optimisation tools, genetic evolutionary design tools etc.  

References 
Z. Fan, M. M. Andreasen, J. Wang, E. D. Goodman (2005) Towards an Evolvable Chromosome Model for 
Interactive Computer Design Support, 177.45, ICED 05 
David E. Goldberg (2003) Genetic Algorithms in Search Optimization and Machine Learning, Addison Wesley 
Longman, Inc. 25th printing  
S. Clement, A. Jordan, S. Vajna (2003) The Autogenetic Design Theory – an Evolutionary View of the Design 
Process, ICED 03 Stockholm, August 19-21 
J. Andersson (2000) A survey of multi-objective optimization in engineering design, Technical Report: LiTH-
IKP-R-1097, Department of Mechanical Engineering, Linkoping University, Linkoping, Sweden  
Wood, K.L. and Otto, K.N., Product Design (1999) Techniques in Reverse Engineering, Systematic design, and 
New Product Development, Pren-tice-Hall, NY 
Steven Wolfram (2001) A New Kind of Science, Wolfram Media 
Peter Bentley (1999) Evolutionary Design by Computers, Morgan Kaufmann 
G. Pahl, W. Beitz (1988) Engineering Design - A Systematic Approach, Springer Verlag 
M. Campbell, J. Cagan and K. Kotovsky (1998) A-Design: Theory and Implementation of an Adaptive, Agent-
based Method of Conceptual design, Artificial Intelligence in Design ’98, Kluwer Academic Publishers, 
Netherlands 
 
Dipl. Ing. Tino Stanković Naval Architect 
Faculty of Mechanical Engineering and Naval Architecture 
Product Development and Design Chair 
I. Lučića 5, 10000 Zagreb, Croatia 
Tel.: (+385 1)6168 369 
Fax.: (+385 1)6168 284 
Email: tino.stankovic@fsb.hr 
URL: http://www.cadlab.fsb.hr 




