
DESIGN PROJECTS AND PROCESSES 625

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2006
Dubrovnik - Croatia, May 15 - 18, 2006.

EMBEDDING GENERAL CONSTRAINT RESOLUTION
INTO A CAD SYSTEM

B. Singh, J. Matthews, G. Mullineux and A. J. Medland

Keywords: design constraints, constraint modelling, CAD

1. Introduction
Computer aided design (CAD) environments have provided designers with increasingly greater
capabilities over the last few decades. Initially only two-dimensional drafting was supported. Now
many systems work using fully three-dimensional assembly modelling together with parametric
capabilities. They can be integrated within a company’s data management, planning and
manufacturing facilities. Earlier CAD systems were simply repositories for geometric entities, and it
was the user who provided the interpretation of what these represented. As systems have evolved,
there has been a desire to make them more “intelligent” and hence be able to take some account of the
meaning of the geometry. One of the ways which has been investigated is the use of constraints. These
can be imposed, for example, to specify something of the function of the design by showing limiting
relations between geometric entities, or to indicating interactions during the operation.
The advent of feature-based CAD systems has meant that components are effectively created
parametrically and relations between the individual geometric identities are specified (perhaps
implicitly) while a user creates a component. This means that the component can be reconstructed in
different forms by changing the defining parameters. The relations are essentially constraints. When a
component is reconstructed it is necessary for the system to be able to resolve these successfully. In
this way, constraints are applied to geometric entities, and modelling systems can take advantage of
the fact that the forms of these are known a priori. As an example, some CAD systems have the ability
to perform assembly of components and, more generally, simulate motion of mechanical systems and
obtain kinematic data. Those with the appropriate analytical support can provide dynamic information.
owever, such tools rely upon the software having specific tools built within it. There is need to allow
more general constraints to be imposed upon a design: constraints which involve the design
parameters but which may be dependent upon to a particular design application and so cannot be
foreseen when the software is created. There are many examples of these. A car engine needs to be
powerful enough to drive the vehicle and yet small enough to fit into the space available for it. There
are often trade-offs required between performance and “cost”, as, for example, when trying to improve
the performance of an existing machine but wishing to keep the number of new parts low. In the food
industry, there are decisions to be made on pipe work (based upon consideration of non-Newtonian
flow) so as to ease production without compromising the quality of the product.
Constraints can also be used in the conceptual stages of design when the underlying geometry is not
yet available [Deng et al 2000]. The lack of precise geometry hampers the application of conventional
CAD techniques. Instead, the design is effectively represented (notionally rather then geometrically)
in terms of the individual components from which it will ultimately be formed. This gives access to
design variables in terms of the parameters and properties of the components. The components can be
linked together so that output parameters from one act as inputs to another, as in Schemebuilder
[Bracewell et al 1996]. There are then constraints which relate how the parameters, particularly the

 DESIGN PROJECTS AND PROCESSES 626

inputs and outputs, interact and what are the limits of operation. Once an initial design has been
obtained, the feasibility of this can be verified by checking that none of the constraints is violated.
To investigate such general constraints, a stand-alone constraint modelling system has been created
[Mullineux 2001]. Via a user language, design parameters can be declared and constraints imposed
between these. These are resolved using optimisation techniques, which means that no assumptions
are made about the form of parameters involved in the constraints. This has several advantages. One
drawback however is that the lack of involvement with a CAD system means that geometry has to be
imported to constraint modeller and exported from it, and there is a lack of facilities for a user to
modify or interrogate the geometric model. The purpose of this paper is to investigate the integration
of such a stand-alone constraint system with a commercial CAD system so that the advantages of both
may be obtained.
Section 2 discusses the ideas of constraints in general and section 3 introduces the stand-alone
constraint modelling system. Section 4 shows how the applications programming interface (API) of
the CAD system can be used to allow the constraint modeller to access the underlying geometric data
and hence achieve a successful integration. Section 5 gives a case study example of modelling a
machine for wrapping confectionary, and the final section gives some conclusions.

2. Constraints
Often in a design process, constraints exist that impose limits on what is possible within the design.
These limits can results from many sources, ranging from customer requirements through to the
manufacturing methods available. These constraints drive the product design process. The aim is to
find a design solution where all the constraints are either fully satisfied or, at least, an acceptable
comprise is achieved between them.
In recent years, the ability to handle constraints has started to appear within commercial CAD systems
- particularly those which are described as being feature-based. Here constraints are applied to the
geometry of the component or components being modelled. Even when three dimensional objects are
being created within a CAD system, the starting point for a user is often the creation of a two
dimensional profile which is then extruded (along a straight line, circular arc, or some other curve) to
produce a solid object. Constraints are often applied to the initial profile to insist that lines are parallel
or perpendicular, arcs and lines are tangential, and so on. When three dimensional objects have been
created, it is usually possible to assemble these and again constraint relations are often available.
These might specify that faces from different objects need to be coplanar, or that lines in different
objects are to be collinear.
CAD systems which possess a geometric interface language can also allow further constraints to be
defined in terms of parametric variables. For example, it may be possible to specify that the lengths of
the sides of a rectangular block need to be in a given proportion, or that the height of a cylinder cannot
exceed its diameter.
However these constraints are essentially only concerned with the underlying geometry of a part or
parts. There can be a requirement to deal with other forms of constraint. For example, there may be a
requirement to limit the speed of motion of a part during the operation of a machine, or to ensure that
a part is sufficiently strong to support another.
Much research has been undertaken into the way that constraints can be identified and resolved. A lot
of this has been directed towards constraints arising from purely geometric considerations [Bouma et
al 1995, Anderl et al 1996, Hoffmann 2005]. Here several approaches are available. One strategy is to
try to order the constraints so that they can be solved in sequence. An alternative is to group
constraints together and then look to solve the underlying equations simultaneously by an appropriate
numerical method.
Comparatively little work has been undertaken on more general constraint-based applications.
Presumably this is because work external to an underlying CAD system is required. In the application
to functional design verification [Deng et al 2000], the functional description of the design is captured
in graph form based upon the interrelation of the components as prescribed by the user. This means
that dependency graphs for the design parameters can be created and constraint propagation methods
employed.

DESIGN PROJECTS AND PROCESSES 627

In another approach [Hicks et al 2001], a stand-alone constraint modelling system is used to help in
the design process for the mechanisms required in packaging machinery. While this has been
successful, its independence from a full CAD system does bring some limitations in terms of
modelling and displaying the underlying geometry. This means that there may be advantages in
integrating such a stand-alone system with commercial CAD software. It is this idea that is
investigated here. It should be noted that this may result in some overlap of capability, as both systems
ought to be able to handle the purely geometric constraints. However, it is thought that the ability to
impose additional forms of constraint and to have greater control over the purely geometric ones may
offer some benefits. The stand-alone constraint modeller is discussed in the next section.

3. Constraint modeller
The constraint modeller is software that was created to investigate the use of constraint techniques in
the design of mechanism and machine systems [Mullineux 2001]. Underlying it is a user interface
language in which the parameters for a given design task can be created and manipulated. In its basic
form, the software allows the creation of geometry in terms of three dimensional wire-frame entities
such as lines and arcs. These are treated as parameters within the user language.
The underlying language acts as a normal programming environment: variables can be declared,
expressions between variables can be evaluated and graphical entities can be displayed. However, the
system also allows constraints between parameters to be imposed. Constraints are defined as
expressions between variables. These expressions are deemed to be true when they are zero; non-zero
values are really a measure of the falseness of the constraint. For example, if three parameters x, y and
z need to be constrained to have a sum equal to 6, then the following constraint rule is applied.

 rule(x + y + z - 6);

Normally several constraints are imposed together and the user specifies which of the design
parameters can be varied in order to seek a feasible solution. The system uses optimisation techniques
to try to resolve constraints [Ge et al 1999]. The sum of the squares of the constraint values is formed
and a minimum is sought by manipulating the free design parameters. This has the advantage of
finding some form of “best compromise” solution even when constraints are in conflict.
Constraints can also be imposed between geometric entities. For example, suppose L2 and L3 are two
lines that have been created. Within the language structure, the expression L2:e2 denotes the second
end-point of L2. The following constraint rule

 rule(L2:e2 on L3:e2);

is used to specify that the two lines should touch at their end-points. Here on is a binary function built
into the user language. Effectively it finds the distance between two geometric objects. When that
distance is zero the objects coincide and hence the function can be used within constraints to define
mating conditions.
The approach can be used to create assemblies of components and to simulate the motion of
mechanism systems. An assembly can be created entirely in terms of constraints such as the one
above. However it is possible to simplify the process. Geometric entities can be grouped within model
spaces [Leigh et al 1989]. Each space is associated with a transformation to indicate how it maps into
world space. Alternatively, the transform can map into another model space so that a hierarchy of
model spaces in created. This is a tree structure whose “root” is the world space.
The hierarchy allows a partial assembly of objects to be created. When the transform of one model
space is modified, the geometry of all spaces closer to the world is left unchanged, and all the
geometry of spaces further away moves together. However the assembly created by the hierarchy

 DESIGN PROJECTS AND PROCESSES 628

alone is only partial; typically additional constraints are required to form the full assembly. As an
example, consider the four bar linkage illustrated in part (a) of figure 1. This shows the three moving
links as line segments. Each line is contained in a model space and the hierarchy of these is shown in
part (b), where W denotes the world space.

Figure 1. Assembly of a mechanism

The hierarchy ensures that lines L1 and L2 stay together. To complete the assembly, the ends of lines
L2 and L3 needs to be joined as suggested by the dashed line in hierarchy diagram. This requires a
constraint which is in fact precisely the one displayed above. This is imposed by allowing the system
to vary the angles of the model spaces of lines L2 and L3. The result is the fully assembled mechanism
shown in part (c) of figure 1.

4. Incorporation within a CAD system
The main purpose of this paper is to investigate the incorporation of a stand-alone constraint
modelling system with an existing CAD package. The aim is to allow a range of constraints greater
than that provided by the CAD package alone to be made available to a user. The NX3 software of
Unigraphics has been used as the CAD system. This offers a number of modes of application. The
most basic is “part modelling” in which the user creates models of individual components. Built over
this are a number of applications. One is assembly work in which individual components are put
together. Other applications include finite element analysis, and the creation of manufacturing
instructions.
This integration of the CAD package with the constraint modeller has been accomplished using Open
API which is the application programming interface language of NX3. An application programming
interface provides the means to interface different standards of software. Using Open API it is possible
to integrate third party applications or programs within NX3 environment. It provides necessary
routines, procedures, variables and data structure for the communication with different pieces of
software. The integration has been achieved with NX3 working in its part modelling mode.
Figure 2 shows the structure of the interfaced system. The user interaction and display is provided by
the CAD system. The language interpreter receives commands from the command window via this
user interface and creates and manipulates the user variables. Expressions involving variables, that
may include geometric objects, can be evaluated. Constraint expressions can be dealt with using the
constraint resolver.
The mai command handling and constraint resolving parts of the constraint modeller operate as
previously. The main difference in the integrated system arises when geometry (solid or wire-frame) is
created. Here, the appropriate Open API call is made to create the object within the memory assigned
to the CAD software. The creation is handled by NX3 itself and it returns a pointer (handle) to the
geometric object. This is held with the constraint modelling software as the “value” of the
corresponding design variable.
One of the crucial needs is to be able to apply transforms determined by the constraint modeller to
objects with the CAD system. Again Open API allows this to be done: the appropriate interface
procedure is called, passing to it both the matrix transform and the pointer to the object. In particular,

DESIGN PROJECTS AND PROCESSES 629

in this way, the constraint modelling software can create assemblies within the CAD system and can
then control simulations of their motion.

Command
interpreter

Variables

Optimiser and
Resolver

Evaluator

User Interface

Solid Modelling API

Other modules

Figure 2. CAD - constraint modeller integrated system

At a basic level, the assembly of objects can be carried out within the CAD system itself. However,
transferring the control to external software allows the form of the hierarchy of model spaces to be
recast via the user language should other means of driving the system be required. It also allows other
constraints beyond mere assembly to be imposed; for example to specify kinematic relations in terms
of velocity and acceleration, to avoid clashes with other parts of a design, and to investigate possible
failure conditions.

Figure 3. Integrated system interface

 DESIGN PROJECTS AND PROCESSES 630

Figure 3 shows a screen shot of the integrated system. This shows the basic CAD screen with a simple
mechanism displayed. The additional window is that dealing with constraint modelling commands.

5. Case study application example
The example presented in this section is based upon part of a sweet wrapping machine. More
specifically, the gripper mechanism is considered. This is used to pull film out from a reel. Once a
sufficient amount of film has been withdrawn, it is cut off. This results in a portion of film being
positioned above the sweet to be wrapped. A separate mechanism then moves the sweet vertically
upwards and into the film, thus starting the wrapping process. The gripper mechanism is shown in part
(a) of figure 4. The mechanism is controlled by two cams: one effectively deals with the forward and
backward motion, while the second is used to introduce a slight upward movement of the film as it is
being drawn across the next sweet.
Part (b) of the figure shows a “stick diagram” of the mechanism. Each line represents an element of
the mechanism and the closed curves are the driving cams. These elements are each embedded into its
appropriate model space. As before, the model spaces hierarchy can be used to perform most of the
assembly of the links. The assembly is completed by imposing constraints so that the two links which
have cam followers lie on the appropriate cam. For example the constraint to position one of the cam
followers onto its cam profile is the following.

rule(camfollower1:e1 on cam1);

In the system in which the constraint modeller is integrated with the CAD software, solid objects
representing the links can be created. The model space hierarchy and the constraints can be used to
assemble these (based on the stick diagram), and part (c) of figure 4 shows their assembly. Allowing
the cams to rotate in steps and resolving the constraints at each stage produces a simulation of the
motion.
Such a simulation allows the track of the end of the gripper to be investigated. Because the assembly
is determined purely by the constraints, it is possible to attempt to improve the design of the output
motion. For example, the path of the gripper can be modified. Then the same constraints used for the
simulation can be imposed to ensure that the gripper follows the new output; this then determines the
profiles of the two driving cams.

Figure 4. Film grip mechanism

DESIGN PROJECTS AND PROCESSES 631

6. Conclusions
Constraints arise frequently in design work and the appearance of feature-based CAD systems means
that constraint resolution is now an integral part of such design tools. However, such constraints can
often only be applied to geometric entities, and constraints which express more general information
about the functionality of a design cannot be dealt with. For these types of application more
specialised tools are required, and these can be distinct from the CAD system.
It has been seen that it is possible to integrate a stand-alone constraint modelling system with a
commercial CAD package. Use has been made of the application programming interface (API)
provided with the CAD tool. This means that the constraint modeller can define the underlying
geometric entities and can have subsequent access to these via pointers. In particular, it is possible for
the external modeller to apply transforms to the CAD entities and hence take control of assembly
processes. This allows the user greater interaction with the assembly and hence provides the ability to
investigate different arrangements.
The combined system has been demonstrated in its use to model, assemble and simulate the action of
part of a confectionary wrapping machine. This has allowed the motion of the end-effector to be
investigated and improved.

Acknowledgement
The research work described in this paper has been carried out with the support of DEFRA research grant given
as part of the Food Processing Faraday. This support is gratefully acknowledged together with that of other
collaborators.

References
Anderl, R. and Mendgen, R., “Modelling with constraints: theoretical foundation and application”, Computer-
Aided Design, Vol. 28, No. 3, 1996, pp 155-168.
Bouma, W., Fudos, I., Hoffmann, C., Cai, J., and Paige, R., “Geometric constraint solver” Computer-Aided
Design, Vol. 27, No. 6, 1995, pp 487-501.
Bracewell, R. H. and Sharpe, J. E. E., “Functional descriptions used in computer support for qualitative scheme
generation - Schemebuilder”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol.
10, 1996, pp 333-345.
Deng, Y.-M., Britton, G. A. and Tor, S. B., “Constraint-based functional design verification for conceptual
design”, Computer-Aided Design, Vol. 32, 2000, pp 889-899.
Ge, J.-X., Shang-Ching, C. and Gao, X.-S., “Geometric constraint satisfaction using optimization methods”,
Computer-Aided Design, Vol. 31, 1999, pp 867-879.
Hicks, B. J., Medland, A. J. and Mullineux, G., “A constraint-based approach to the modelling and analysis of
packaging machinery”, Packaging Technology and Science, Vol. 14, 2001, pp 209-225.
Hoffmann, C. M., “Constraint-based computer-aided design”, ASME Journal of Computing and Information
Science in Engineering, Vol. 5, 2005, pp 182-187.
Leigh, R. D., Medland, A. J., Mullineux, G., “Model spaces and their use in mechanism simulation.” Proc. Instn
Mech. Engrs - Part B - Journal of Engineering Manufacture, Vol. 203, 1989, pp 167-174.
Mullineux, G., “Constraint resolution using optimisation techniques”, Computers & Graphics, Vol. 25, 2001, pp
483-492.

Mr Baljinder Singh
Research Officer
University of Bath
Department of Mechanical Engineering
Bath, BA2 7AY
United Kingdom
Tel.: +44 (0)1225 385937
Fax.: +44 (0) 1225 386928
Email: B.Singh@bath.ac.uk
URL: http://www.bath.ac.uk

