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1. Introduction 
The design process can be viewed as a series of decision-making processes that starts with an abstract, 
often vague and uncertain description of the new product to be developed and leads onto specification 
of the final product attributes. Design analysis is conducted to aid these decision-making processes 
using various forms of computational and mathematical models. Hence, the output from the design 
process is a representation of the designed artefact as well as a collection of evaluations of the artefact 
supported by a variety of models [Ohsuga, 1989]. A key focus is on the design analysis conducted in 
the embodiment stage of the design process where a range of simulation tools and techniques such as 
Finite Element Analysis (FEA) are applied. At this stage design concepts are embodied and 
transformed into detailed designs and key decisions regarding the form and attributes of the product 
need to be made. During this work, reduction of uncertainty and imprecision in the representations of 
the data, model or process is crucial to enable effectiveness in decision-making. To achieve this, 
information has to be drawn from various stages of the product development process such as 
feasibility study, production planning, manufacturing process capability and testing.  
In adaptive and variant design the application of product domain-specific knowledge and experience is 
most pertinent. In such design, the product attributes and the appropriate design methods and 
strategies are well known to the design team, and the notions of conceptually static design, product 
family, modular design platform and parametric design are applicable concepts. Even in this mode of 
design, product evaluation has traditionally relied heavily on tests and experiments that are expensive 
and time-consuming in modern lean product development processes. For this reason, design practice 
in industry is characterised by the move towards simulation-based evaluation using modular analysis 
tools. The trend is especially evident in the automotive and aerospace industry. However, an important 
prerequisite to the success of this ‘virtual’ engineering is the need to rigorously understand and 
manage risks and uncertainties in the embodiment and evaluation processes. In light of this, there is a 
need to capture the steps of design analysis processes and reusing knowledge from past design cases to 
enhance decision-making performance and minimise uncertainty and risk.  
This paper presents a framework for capturing knowledge and understanding of uncertainty to support 
the reuse of design information and knowledge in the context of adaptive and variant design. It is 
hypothesised that a process modelling approach can be used for recording instances of the design 
analyses in a structured and consistent manner such that information and knowledge can later be 
traced, revisited and reused. The framework developed in this paper will provide a basis for the 
development of strategies and tools for capturing design analysis knowledge towards and ultimately to 
provide a complete “extended product model” to support through-life knowledge management. The 
extended product model will incorporate information about the product, process and rationale. 
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2. Review of related methods 
Design analysis processes typically involve information that is uncertain and activities are 
characteristically ad hoc, intuitive, iterative and disparate. For example, a simple design analysis may 
be characterised by deterministic data, closed-form equations with a discrete performance parameter 
whereas a complex design analysis process may be characterised by probabilistic data, numerically 
modelled with a field performance parameter. Increasingly, design analyses are becoming more 
complex as customers demand products of high quality and reliability, delivered rapidly and cost 
efficiently. Probabilistic methods are applied in computational models to allow for the effect of 
stochastic uncertainty on design performance to be fully investigated [Riha, 2002]. Probabilistic 
analysis offers the opportunities for more holistic understanding of product performance thus 
improving design confidence. However, the availability and management of information to support 
such resource-intensive analyses has proven significant challenges to engineering companies to date.  
In order to support reuse, there is a need to dictate structure and formalism in modelling of these 
complex analysis processes such that information sources, quality and uncertainty can be traced. A 
process model can be used as a basis for a structured representation and organization of information 
and knowledge over a range of design analyses. Process modelling is typically used to describe 
interrelated or sequential activities in a process to understand systems operation and to facilitate the 
visualisation of information flow in the systems. It allows for the decomposition of complex processes 
into suitable levels of abstraction, and the separation of information and activity provides a suitable 
basis for the accumulation of knowledge about the uncertainty and imprecision associated with each. 
A review of process modelling approaches that are typically available to designers for modelling 
design processes, including Data Flow Diagram (DFD), Structured Systems Analysis and Design 
Method (SSADM), Integrated Definition (IDEF), Petri nets, Unified Modelling Language (UML), 
Design Structure Matrix (DSM) and Signposting has been reported elsewhere [Goh, 2003]. 
Developments in process representations for Business Process Reengineering (BPR), Work Flow 
Management (WFM) and manufacturing process planning have focused on information representation 
that supports sharing and exchange across a broader range of processes in the product lifecycles.  
Process models are used in various applications for modelling information and activity dependencies 
and flows. For instance, in modelling the generic engineering design process, [Vajna, 2001] 
introduced definitions and concepts for a knowledge-based engineering process model, and suggested 
some 50 common process elements (termed activities in this paper). The application emphasis in this 
paper is in design analysis. This requires nomenclatures relevant to a range of analysis processes, 
including applications where uncertainty prevails. It was concluded in the previous study that a single 
process modelling language that contains sufficiently rich nomenclatures for representing the design 
analysis process is not yet available [Goh, 2003]. A relevant work in the representation of analysis 
information is the Engineering Analysis Core Model (EACM) [Leal, 1999]. The EACM defines 
relationships between information about the process and about the product, including analysis and test, 
thereby integrating the functions of Product Data Management (PDM) and WFM. Such development 
in standard terminology, definitions and classification towards providing an ontology will contribute 
to enhancing the capability for process modelling of design analysis. 

3. Framework development 
This section proposes a foundational framework for capturing design analysis knowledge using a 
process modelling approach. The framework was developed based on the authors’ past experience in 
simulation-based design, uncertainty management, process modelling and knowledge management. 
Case studies were modelled using the framework without reference to any specific modelling 
language. The motivation for this exercise is to test the ideas and to emphasize issues associated with 
modelling of design analysis processes. The practicalities of the hypothesis are then reflected. 

3.1 Definitions 
For clarity, several terms are now defined in the context of this paper. 

• An activity is an act that consumes some inputs to produce some outputs. A process consists 
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of inter-related activities performed to achieve specific goals. A process is composed of other 
activities, and may itself be an activity within a larger process [Arkin, 2002]. 

• Transfer functions are the mathematical representation of a relationship over a defined range 
of conditions that relate the input variables to the output variables with the purpose of 
evaluating the characteristics of interest of a physical system.  

• Design parameters are key input variables in the physical domain that characterise a design. 
The design space is a feasible region for realisation of several product variants through 
parameterisations of the design parameters (as in parametric design). 

• Performance parameters are the output variables from transfer functions that are determined 
from the mapping of a set of design parameters. The performance space is the region where 
performance parameters are described to give a meaningful exploration of the analysis results. 
The performance parameters can be described as a discrete variable, a function of another 
variable or a field variable. 

• Evidence concerns data collected relating to elements, products or systems of identical or 
similar attributes to a design case. For example, evidence regarding the actual performance of 
the modelled artefact can be gathered from product behaviour in service, failure data, 
prototype tests and correlation with similar products. 

3.2 Activity levels of abstraction 
Often in process modelling the level of modelling abstraction needs to be determined depending on 
the scope and details required and the viewpoints being represented. Some modelling languages allow 
for multiple levels of abstraction to resolve this issue, using a hierarchical structure (e.g. IDEF0, 
UML). The level of abstraction is a trade-off between simplicity and usefulness – too broad results in 
insufficient detail and too detailed requires extensive resources in building and storing the model. For 
the purpose of this paper, two levels of abstraction were adopted for describing the analysis processes. 
The low level of abstraction is a set of activities that are characterised by transfer functions. They can 
be derived from physics and science, including analytical equations and numerical models.  
High level abstraction – providing a coarse view of the analysis process – encompasses activities that 
are not described by the transfer functions. This abstraction shows the overall framework to be 
populated in a domain, including the key activities and principal information flow. The activities may 
include pre- and post-processing such as statistical distribution fitting and heuristic functions and 
rules, compare-evaluate-verify-assess etc. A potential source for defining a set of activities in design 
analysis is the Process Handbook published by the Massasuchettes Institute of Technology (MIT) 
[Malone, 2003]. The handbook consists of knowledge repositories about business and software 
processes organised in classification systems, available at http://process.mit.edu/.  
Design analysis processes that are typically carried out in the embodiment stage are listed in Table 1. 
These processes typically consist of a series of common high-level activities and share characteristic 
activity patterns. For instance, in validation processes, typical activities involved are “assess 
performance”, “compare with evidence”, “evaluate against acceptance criterion”, and “decide to 
accept or reject the model”. In these processes, a number of performance indicators are established 
against some success criteria for the product where performance is assessed using these indicators. 
They may be either economical or technical parameters. For example, an economical performance 
indicator is the sales volume exceeding the break-even thresholds; a technical performance indicator 
for the same product is the number of hours of service before the first failure is encountered. The 
objectives are to qualify the performance of a design against the specified values of the performance 
indicators such as function, safety, cost, reliability and quality.  
It is proposed that standard process templates such as that illustrated in Figure 1 can be developed for 
each of these processes, while allowing some customisable properties for variation between process 
instances. It should be noted that although the IDEF0 notation [IDEF, 1993] is adopted to illustrate the 
discussion, it is not suggested that the same language be used for describing the extended product 
model. Contextual information about the activity such as a brief summary, execution time, analyst, 
constraints and their rationale, resources and how they are used in the activity should also be recorded. 
Similarly, additional information about the data such as number of specimens, test condition and 
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machine identification should be documented. This metadata can be stored and used in organising and 
retrieving process instances for reuse purposes.  

Table 1. Proposed classification of design analysis processes and objectives 
Design analysis 

process 
Design analysis objective Description 

Sensitivity 
Analysis 

Pareto ranking of 
variables 

To determine the percentage contribution of each design 
parameter to the variation in performance parameters 

Performance 
evaluation 

Performance parameters To determine the performance parameters from the mapping of 
a set of design parameters 

Reliability 
analysis 

Probability of success or 
failure 

To determine the probability of failure or reliability of 
components and systems 

Optimisation Recommended variables To determine optimum design parameters that meet some 
objectives, e.g. minimum cost, weight or probability of failure 

Validation Evaluation against 
acceptance criteria 

To determine the validity of modelling results 

Error evaluation Error functions To determine errors between estimated and actual performance 
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Figure 1. A high level template-based process model 

For the low-level abstraction, the activities are transfer functions that consume input data to produce 
output data. In broad terms the input data comprise the “design parameters” and the output data 
comprise the “performance parameters” with transfer functions acting as the transformation 
relationships between them. From observation, the constructs of processes at this level of abstraction 
are much more bespoke, modular and ad hoc compared to the high-level processes. We have adopted 
notation similar to the Design Roadmap [Park, 1999], without commitment, to illustrate in Figure 2 an 
example of an analysis process described at this level of granularity. For our purpose, the transfer 
functions may be modelled online or offline depending on the existing level of tool integration. This 
means the tools used for solving transfer functions A1 – “Buckling Analysis Using Donnell Type 
Equations” and A4 – “Nonlinear Static FEA” do not need to be compatible, but the data format for D4 
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– “Buckling Load of Perfect Shell” and D5 – “Buckling Load of Imperfect Shell” must be 
interchangeable after some processing. Sharing of some process entities may occur in a multi-
objective analysis scenario where transfer functions and data may be used repeatedly in various stages. 
As evident in the same diagram, both shell dimension and material property data appear as input data 
to transfer functions A1 and A4. The modelling approach adopted at this level of abstraction is to 
allow for processes to be modularly built and to incorporate alternative transfer functions to assess 
their utility. The purpose of the low-level abstraction is to model the analysis data and transfer 
functions in greater detail, and to associate uncertainty with each of the process entities to allow 
aggregation and accumulation of errors as discussed next. 
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Figure 2. A low level modular bespoke process model [Goh, 2005] 

3.3 Incorporating uncertainty modelling in design analyses 
Conventionally, success in design under uncertainty is ensured by over-designing through 
conservative design formulae using ‘safety factors’. In design analyses, uncertainty may be associated 
either with the representations of the data or the transformation activities. In mechanical engineering, 
the classes of design parameters typically described in a transfer function are physical or property data 
describing the geometry, material or load. For the representation of numerical information, a number 
of properties need to be recorded along with the original data. The properties include dependency, 
correlation and behaviour such as nonlinearity, discontinuity, validity region etc. As noted previously, 
description of uncertainty in these parameters can vary from deterministic values to probabilistic 
distribution functions. For instance, dimensional parameters usually assume nominal or mean values 
in Computer-Aided Design (CAD) models. Then, tolerances are specified on the dimensions 
considering assembly criteria, manufacturing processes and economy. Process capability charts or 
databases can be consulted for information on stochastic uncertainty.  
Uncertainty in the transfer functions can be caused by deficiencies in knowledge of the physical 
behaviour, e.g. stress analysis often requires simplifying assumptions on the material property and 
behaviour, as well as deliberate simplifications for economy and convenience. For instance, an 
approximation model (e.g. response surface) introduces errors by simplifying the actual functions with 
low-order polynomials. In solving the transfer functions, numerical approximation used in FEA 
introduces discretisation errors. In general, the accuracy of models is known to decrease when the 
complexity in the physical problems rises. The complexity in modelling may be caused inter alia by 
implicity, non-linearity, discontinuity, time-dependency in the parameters and relationships.  
The presence of uncertainty in the evaluation of performance will undoubtedly affect the quality and 
accuracy of decision-making. In advanced analytical processes, much more complete information 
about the data and transfer functions is required than in deterministic evaluation drawing information 
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from various stages of the product development process including experience with past products. A 
process model approach allows for uncertainty to be explicitly associated with each of the 
interdependent information entities and activities, for example, by maintaining links with the 
information source. This association can then be used to trace and manage uncertainty, errors and 
deficiencies in a complex analytical process.  
Typically in design analysis, evidence is collected to validate the predicted performance of a product. 
The source of information for evidence may come from prototype testing, benchmarking, past 
experience etc. and may be subjective and qualitative. When objective and quantitative evidence is 
available, error functions can be derived representing the discrepancy between predicted and actual 
performance [Goh, 2005]. The characterisation of evidence is a subject of ongoing research, where its 
values in terms of provenance and relevance are being considered. Referring to Figure 2 as an 
example, the comparison between D5 – “Buckling Load of Imperfect Shell” and D6 – “Limit Load 
from Experiments” yields an error representation of the discrepancy between the predicted and 
experimentally measured limit load of thin shell in buckling (refer to the first case study in Table 2). If 
uncertainty in both the shell dimension and material properties can be characterised, the uncertainty 
due to the transfer function (nonlinear static FEA) can be estimated. This way, the process model can 
aid the visualisation of information dependencies in complex processes.  

4. Case studies 
Twenty cases from a wide range of design analysis applications of varying complexities were studied 
to test and validate the framework [Goh, 2005]. The analysis processes were modelled as closely as 
possible to the descriptions given in the original literature. Besides observing the common content of 
the case studies, some distinguishing features are also highlighted to facilitate detail specification of 
the extended product model. For conciseness, only six of these cases are summarised in Table 2. A 
process model for the buckling of imperfect shell case study is shown in Figure 2.  

5. Discussions 
A framework for capturing and handling design analysis knowledge has been developed based on the 
consolidation of our understanding of typical design analyses, previous knowledge in disparate 
disciplines and a review of process modelling approaches. The proposed framework requires changes 
in the way information and analytical processes are recorded. Currently, they are recorded in reports 
summarising aspects of the analysis with references to key sources of information. Such format does 
not allow for automatic trace of information dependencies and dynamic updating when new 
information becomes available. Often, in a complex multi-objective analysis process, the data and 
transfer functions may be shared. In process models, relationships can be defined such that data and 
model dependencies can be traced easily.  
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Figure 3. Software architecture of the knowledge capture framework  
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In order to support knowledge utilisation and reuse, the engineering community needs to continue its 
effort in defining standards, neutral formats and ontologies. The proposed framework requires an 
ontology to be defined for the high-level activities, and process templates written in a suitable 
language. Data items should be stored in computer-interpretable formats to allow for automatic 
processing. Then, for example, a statistical module can be invoked on this data to calculate the mean 
and standard deviation of the set of data. Knowledge banks can be constructed to store theory, best 
practices, standards and design rules that can be updated dynamically. Figure 3 shows a potential 
software architecture of the framework for capturing design analysis knowledge. The user interface 
can be used to collect contextual knowledge about processes. The information provided at the high-
level abstraction can be assessed against economy, suitability and utility metrics thus providing best-
practice advice to novice engineers regarding optimum analysis routes, methods and models.  

Table 2. Summary of analysis processes reported in case studies 
Case study Design analysis 

process 
Design analysis objective Observations 

Performance 
evaluation 

Statistical distribution of the 
limit load 

1. Buckling 
of imperfect 
thin shell  Validation Percentage error between 

estimated limit load and 
analytical solution  

• Activities that are typically 
performed in numerical analysis 
(mesh size, adaptive meshing, 
boundary conditions etc.) 

• Validation using solutions from 
simplified problem 

• Small sample size for experiments 
used in validation 

Validation Percentage error between 
estimated thermal resistance and 
another design and experiments  

2. Thermal 
performance 
of heat sinks 

Optimisation Geometrical variables that 
maximise thermal resistance  

• Multi-objectives analysis requiring 
data and activity sharing 

• Performance space characterised by 
a function of another variable 

Validation Percentage error between 
estimated and experimental 
rupture velocities 

3. Fracture 
of steering 
knuckle  

Optimisation Shape that maximises critical 
energy and minimises weight 

• Multi-objectives analysis with 
activity sharing (transfer function 
used in various instances) 

• Field performance space 
• Evidence of model performance in 

another application 
4. Sheet 
metal 
flanging  

Validation Acceptable error between 
estimated springback angle and 
experiments 

• Multiple validation cases in design 
space giving more confidence 

• Alternative routes allowing for use 
of alternative models 

Performance 
evaluation 

Statistical distribution of 
bearing life 

5. Life of 
roller 
bearing  Reliability 

analysis 
Probability of failure at 
corresponding life 

• Evidence inferred from early life 
data 

• Data sharing between processes of 
different abstraction 

6. Shrink-fit 
failure in 
torsion  

Sensitivity 
analysis 

Pareto chart ranking for 
variance contribution  

• Evidence available to suggest 
confidence in part of the process and 
overall process 

• Combination of recorded instances to 
suggest best route/alternative models 

6. Conclusions 
In order to capitalise on the knowledge economy, companies need to be able to record their knowledge 
and experience such that they can revisit, update and reuse information and knowledge. Many 
industries today are moving from supplying products to owning, maintaining and upgrading them on 
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behalf of their customers over many decades. This move to a product-service business model means 
there are greater opportunities to capture and reuse information and knowledge in the design process, 
because the designing company is also in control of the through-life service element. To justify the use 
of advanced resource-intensive simulation tools and methods to deliver improved performance and 
reliability, systems and mechanisms to support information requirements need to be in place. This 
paper has reported on a conceptual framework for capturing design analysis knowledge towards 
providing such information and knowledge-support systems for timely access to information to aid 
effective decision-making in virtual engineering. The framework allows for representing 
understanding of the state of data, information and analytical relationships in engineering domains as 
well as the uncertainty and imprecision associated with them. It is not the intention of this paper to 
deliver a tool or a modelling language but to discuss a framework towards defining a complete 
extended product model to support through-life knowledge management. This approach presents a 
new opportunity to systematically and automatically record for error in each analysis instance that 
might be used to correct simulation predictions. It is speculated the framework might allow for data 
mining or Case-Based Reasoning (CBR) to improve confidence in the next product variant.  
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