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SENSITIVITY ANALYSIS: A PRIORI AND POST FACTO 

M D Giess, S J Culley, B J Hicks 

Abstract 
The use of sensitivity analysis allows for parameters that influence system performance to be 
identified, and (in the case that such influence is undesirable) remedial action to be taken.  An 
a priori sensitivity analysis requires that the system be modelled analytically, where the 
specific relationships between parameters must be understood and defined in order to 
construct this model.  This is not always possible or practical.  Data Mining (DM) analysis of 
manufacturing data allows sensitivity analysis to be performed post facto without recourse to 
analytical modelling, simply by recording and analysing manufacturing data generated as part 
of a standard manufacturing process.  This paper considers whether it is possible to use a DM-
based approach without recourse to the considerable overhead of a priori construction of an 
analytical model. 

In this research a traditional analytical model was used to provide a benchmark sensitivity 
analysis ranking. This information had previously been used to good effect in industry, thus 
verifying its accuracy.  This analytical model was used to generate 1000 instances of data 
representing manufacturing data, where variance within tolerance of the product parameters 
were mapped via the analytical model onto variance in product performance. 

The next stage was to create DM models, in the form of Decision Tree Induction (DTI) and 
Artificial Neural Network (ANN)models, in order to model this data.  Information was 
extracted from these models using sensitivity analysis for the ANN model and a bespoke 
significance metric approach for the DTI model, giving information in the form of a ranked 
list. 

Correlation was seen to be good between information from the ANN and analytical models, 
where 3 of the 4 most influential parameters featured in both rankings, and the DTI model 
agreed with the analytical model ranking regarding the most influential parameter.  The 
method of information extraction for the DTI models was suggested to require further 
refinement to improve the accuracy of ranking of the less significant parameters. 

Keywords: Manufacturing data analysis, Data mining, Sensitivity analysis 

1. Introduction 

The research described in this paper is but one aspect of a project which aims to allow 
manufacturing data to be examined for the purposes of providing information to designers. 
This research project focuses exclusively upon data generated as part of a manufacturing 
operation, thus specifically excluding data generated during external experimentation.  Many 
methods exist for the analysis of data generated during a manufacturing process, for example 
Taguchi [1] or other Design of Experiments methods [2], however these methods rely upon 
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either an ability to control dependent variables or upon specifying an expected relationship 
within the data.  In the case of manufacturing data it is suggested that neither situation can be 
guaranteed.  Data Mining (DM) is a methodology that uses Machine Learning (ML) and 
associated modelling methods to analyse data free from the need to specify expected 
relationships, and where the modelling methods seek to extract relationships between data by 
considering the effects of inherent variation within the data. 

DM, and the associated ML modelling methods, have previously been used within 
engineering, a notable example being the work of Reich and Barai [3].  DM is a complete 
methodology, extending from initial consideration of the nature of business and data through 
to modelling of data and evaluation and deployment of obtained knowledge.  As a general 
observation, it has been noted that much of the literature describing DM applications within 
engineering focused upon the middle stages of analysis, the actual modelling of the data, at 
the expense of both the initial business and data understanding stages and the later evaluation 
and deployment stages. 

In terms of addressing these neglected areas, this paper describes research into the later 
evaluation stage, where models created as part of the DM analysis are investigated and 
consideration is given to methods of extracting information from created models.  Whilst 
establishing the accuracy of the created models is relatively trivial, achieved by evaluating 
model performance on specific validation datasets, a difficulty remains in verifying the 
accuracy of the extracted information.  

This was addressed by using a previously completed, industrially validated study as a source 
of verified information against which information from the DM models could be compared.  
The previous study provided information in the form of a sensitivity analysis, indicating the 
effects of variation within each product characteristic upon product performance.  Information 
from DM models was extracted in a similar form, allowing for direct comparison.  Of great 
importance is the idea that the initial study is a priori, where the analysis is carried out before 
the product is manufactured, whereas the DM sensitivity analysis is post facto.  The a priori 
analysis requires a means of physically modelling or mapping the performance of the product 
or system, whereas the DM analysis models the data generated during manufacturing.  It is 
highly preferable to be able to model the system before the onset of manufacturing, as 
information may most efficiently be deployed at this point, but in many cases such modelling 
is either impractical or inaccurate.  In such cases the DM analysis is useful as it requires no 
physical modelling of the system, and the data is generated via direct measurement of the 
actual product, which has been manufactured according to the designed process. 

2. Rationale and Objectives 

The research described in this paper is part of a wider project that seeks to provide means of 
extracting information from manufacturing data using DM methods.  Issues related to the 
nature of manufacturing data are the topic of separate discussion, to be published in due 
course, and this paper focuses solely on the methods of creating and extracting information 
from DM models.  It is intended to demonstrate the proposed approach via analysis of 
computationally derived data, generated from an analytical model.  This analytical model will 
also be used as a basis for a sensitivity analysis, providing benchmark information against 
which the information from the DM models can be compared and contrasted.  

The objectives of the research described in this paper are: 
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• To propose a methodology in which to create and interrogate DM models using 
engineering data  

• To indicate the veracity of information extracted from ML models via direct 
comparison with an a priori sensitivity analysis. 

3. Analytical Model 

 

Figure 1 Packaging Machine Mechanism 

The analytical model used in this research describes the mechanism of a packaging machine, 
whose construction can be seen in Figure 1.  The machine takes flat-pack boxes from a stack 
and punches them into the required shape through a die.  The mechanism was computationally 
modelled using the constraint-based modelling software environment SWORDS [4].  This 
software allows for mechanisms to be assembled and manipulated according to pre-defined 
constraints, and the motion of the mechanism can be reviewed to optimise both component 
paths and physical performance (such as velocity and acceleration). 

As background, the mechanism under examination is based upon a machine used by an 
industrial collaborator. This mechanism was seen to be prone to malfunction in the event of 
excessive acceleration of the vacuum grips holding the flat pack boxes, where these vacuum 
attachments lost contact with the boxes.  The mechanism is adjustable, allowing for different 
shaped boxes to be assembled, however this adjustability results in variance in the lengths of 
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each linkage each time that the machine is adjusted for a specific box size.  This variation in 
linkage length is considered to cause excessive acceleration and hence malfunction. 

The analytical model was created for the purpose of deducing which specific linkage lengths 
contributed to this variance in acceleration.  This was performed via the use of a sensitivity 
analysis.  The results of this sensitivity analysis were used successfully in practice, where 
corrective efforts were focused upon this linkages whose variation in length were seen to have 
great impact upon the magnitude of acceleration.  The issue under consideration is whether a 
non-analytical DM-based approach would be able to provide similar information and insights 
to the analytical model. 

3.1 Sensitivity Analysis of Analytical Model 

 

Figure 2 Mechanism Notation 

Figure 2 shows a 2-dimensional representation of the mechanism and introduces the 
terminology that will be used to define each link in the mechanism.  The geometry of this 
mechanism was entered into the constraint-based modeller as a series of linkages of 
appropriate length, and constraints were added to define the pivot points and the unions of 
each linkage. 

Table 1 Form of Perturbation for Analytical Model Sensitivity Analysis 

Parameter Perturbation 

Linkage Lengths +/- 2% of linkage length 

Pivot Points  +/-2% of overall mechanism height 

 
The mechanism was cycled and the maximum acceleration seen over the entire cycle was 
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recorded.  This maximum acceleration, and the linkage lengths and pivot positions were used 
as a benchmark, representing the ideal arrangement and performance of the mechanism.  The 
sensitivity analysis sought to identify parameters which exert a strong influence upon the 
acceleration of the working head, and this was performed via perturbation of each parameter, 
whilst maintaining the original settings for the remaining parameters, and recording the 
variation in maximum acceleration of the working head.  Table 1 shows the form and 
magnitude of the perturbation for each different parameter.  The pivot points were perturbed 
in both the X and Y directions as separate operations. 

Table 2 Results of Analytical Model Sensitivity Analysis 

Change in Acceleration Parameter 

Positive 
Perturbation 

Negative 
Perturbation 

Summed 
Magnitude 

Rank 

L5b 30.1 -22.8 52.9 1 

L3 -10.5 -5.5 16 2 

L4 -7.1 -7.6 14.7 3 

L2 2.3 -6.9 9.2 4 

L3a 1.5 -6.5 8 5 

L7a 4 -3.9 7.9 6 

P2_y -3.6 -3.8 7.4 7 

L1 2.4 -4.8 7.2 8 

L6 0.6 -5.7 6.3 9 

P4_x 2.7 -2.9 5.6 10 

 
Table 2 shows the results of the analytical model sensitivity analysis, where the parameters 
listed in the first column are labelled in the manner defined in Figure 2.  The pivot point 
information has a qualifier that describes variation in the Cartesian co-ordinate system (for 
example, p4_x indicates a variation in the position of pivot point number 4 in the x-direction).  
The magnitudes of the effect of positive and negative perturbation are summed for each 
parameter, and this summed metric is used to compile the ranking.  These results will not be 
expanded upon here; they are intended simply to serve as a benchmark for the information 
from the DM models.  It is emphasised again that these results were successfully deployed by 
the industrial collaborator for the purposes of system improvement, ensuring the veracity of 
this information. 

3.2 Generation of Data for DM Modelling 
The second task of the analytical model is to provide data for DM analysis, where such data 
will be taken to represent manufacturing data, or data that could feasibly be measured and 
recorded during a given manufacturing, assembly and testing process.  In such a process each 
aspect of each component of a product will be assigned a manufacturing tolerance, and the 
specific value of each aspect will vary within this tolerance.  It is suggested that the effects of 
these variations will manifest themselves as a variation of the performance of the product 
under test.  The task of the DM analysis therefore is to relate the variation in performance (in 
this case maximum acceleration) to variation within each component, indicating where 
consistent trends are found across a number of products. 
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In order to generate data describing both variation within tolerance and the effects upon 
performance of such variation, it is necessary to define the tolerances and nature of variance.  
The tolerances used were the same as those listed in Table 1, where the linkages were 
assigned tolerances of between +/-2% for their lengths and the pivot points were free to move 
+/-2% of the total height of the mechanism in any direction.  Random variance within these 
tolerances was specified, although it is possible that other, more skewed distributions might 
be seen in practice. 

The input data, comprising the mechanism link lengths and pivot positions, were generated 
according to this variance within tolerance.  This was achieved via the use of a simple macro 
implemented in the Microsoft Excel package [5].   1000 such cases were generated, each one 
with random variations in each link length and pivot position, representing a batch of 1000 
mechanisms produced within tolerance.  The configurations of each of these 1000 exemplars 
were loaded in turn into SWORDS and the maximum acceleration seen in a cycle was then 
computed.  The resultant dataset therefore contained information describing the link lengths, 
pivot positions and maximum accelerations for 1000 different mechanism configurations.  
This data could now be analysed using DM methods in order to deduce which input 
parameters (the link lengths and pivot positions) exerted the greatest influence upon the 
mechanism acceleration. 

4. DM Modelling 

The two algorithms used in the DM analysis were Decision Tree Induction (DTI) and 
Artificial Neural Networks (ANNs).  Good introductory texts are given by Witten and Frank 
[6] and Fu [7] for the DTI and ANN algorithms respectively.  The DTI algorithm used in this 
analysis is the C5.0 algorithm, a commercial algorithm developed from Quinlan’s earlier (and 
freely distributed) C4.5 algorithm [8]. 

Whilst both algorithms provide a prediction of the likely value for an output metric given the 
values for a set of input variables, and both are created by analysis of previous exemplars with 
known inputs and outputs, the two algorithms are notably different in methods of creation, 
function and information extraction.  The DTI algorithm assembles a tree structure which, via 
the use of logical conditional statements regarding the value of a given input parameter at 
each node or branch junction within the tree, leads to a given prediction within a leaf node.  
This prediction is give in the form of a class, where the output is considered to reside within 
one of a number of predefined, mutually exclusive classes or ranges.  If, as is the case in this 
research, the output is continuous, it must be broken down into appropriate ranges. 

The ANN algorithm assembles a network of interconnected nodes, where each 
interconnection is given a weighting which acts to multiply or attenuate the signal passed 
from each node along that specific connection.  By iteratively adjusting the values of these 
weights, the network can be adapted to give a desired signal from the output nodes given 
specific signals to the input nodes.  This iterative adjustment is carried out by attempting to 
minimise the error between actual signal and desired signal for each examplar within the 
dataset used for model creation, following a gradient descent.  The back-propagation 
algorithm, as defined by Rumelhart et al [9] , is typically used for this task. 
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4.1 Creation of DTI Models 
In the case of the DTI algorithm, the continuous output variable (the maximum acceleration) 
must be divided into appropriate ranges prior to the creation of the model.  This was achieved 
by assigning instances (exemplars) to three ranges, A, B and C, where range A contained 
those instances with a low maximum velocity and range C those instances with a high 
maximum velocity.  The boundaries of each range were assigned in such a way as to ensure 
equal density of population across all three ranges. 

Each DTI model was created with a pruning severity of 90 and a minimum number of records 
per child branch of 2, where these specific values correspond to the implementation of C5.0 as 
seen in the Clementine proprietary DM package [10].  Both of these parameters assist in 
preventing the tree from overspecialising or overtraining, a phenomenon that occurs when the 
models extend to describe each specific instance as opposed to providing a concise 
description of general trends.  In the event of overtraining these parameters may be adjusted 
to produce a more compact tree. 

Table 3 Results of DTI Modelling 

Model 
No 

No. of 
training 
instances 

No of 
Validation 
Instances 

Training 
Accuracy 
(%) 

Validation 
Accuracy 
(%) 

Cross-
validation 
Accuracy 
(%) 

DTI-1 100 900 96 55.27 63 

DTI-2 200 800 90 58.8 51 

DTI-3 500 500 93.4 60.08 63.2 

 
Table 3 shows the results of the DTI modelling.  The three models all have training accuracies 
of 90% or greater, indicating that the models describe the functions within the training data 
well.  The validation and Cross-validation accuracies are lower, however these are more 
representative measures of model accuracy and should be used in preference to training 
accuracy. 

4.2 Accuracy Considerations 
Accuracy is more faithfully evaluated via the use of external validation, and has been applied 
in two ways here.  The validation accuracy depicts the percentage of correctly classified 
instances within a separate dataset, which was not used in the creation of the model.  Whilst 
the training accuracy simply indicates how well the model has captured the relationship 
between input and output, it is possible that it has simply learnt the relationships by rote and 
has not captured the underlying process or relationships.  By testing on unseen data, a more 
accurate impression of the success of modelling can be gained, as the model is forced to 
predict the output for inputs of which it has not previously seen, and as such it can only 
provide an accurate prediction if it has captured the relationship that projects input onto 
output.  This method, however, has weaknesses in that the specific compositions of both the 
training and validation datasets have an effect upon modelling, and that data is held back from 
model creation, reducing the richness of data used in model creation.  Cross-validation 
addresses both of these concerns by creating equally sized data samples that are used for both 
training and validation.  A range of models is created, equal in number to the number of data 
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sample sets, and for each model one data sample set in turn is excluded from training and 
used for validation.  These validation accuracies are aggregated across each model in this 
range, and the entire dataset used to create the model.  This aggregation attenuates the effect 
of validation dataset composition. 

4.3 Creation of ANN Models 
The ANN modelling was carried out using a standard feed-forward network with back-
propagation, once again utilised via the Clementine DM software environment.  The ANN 
algorithm requires significant initial user input in terms of specifying an architecture or 
topology for the network, effectively defining how many interconnected nodes will be used 
between the input and output nodes.  This is an important decision, as the number of nodes 
controls the complexity of the network that can be fitted.  Bishop (1995) gives a useful 
analogy with fitting a polynomial to data points; with too few coefficients the polynomial will 
be unable to capture the underlying function, and with too many the polynomial will start to 
measure the noise on the data and generalisation will be reduced.  The topology can be 
manually prescribed or iteratively adjusted during training using methods such as pruning or 
the application of  Simulated Evolution (of which Maniezzo provides a good example [11]). 
The data used in this research is computationally generated and is free from any significant 
noise, and hence overtraining is unlikely to be as prevalent as when applications map noisy 
data.  In this respect manual definition of the topology was used in preference to the more 
computationally expensive methods of iterative adjustment. 

As the topology is manually selected, it is unlikely to be optimal, and hence overtraining is 
likely to occur.  To prevent this, a number of models were created using a separate test set, 
where model accuracy is evaluated using this test set of the training iteration and training 
terminated in the event that this test accuracy decreases over a number of cycles. 

Table 4 Results of ANN Modelling 

Accuracy 

Train Valid 

Model No Train Data 

Amount 

Test 
set 

% 

Topology – 

 input, hidden1, 
(hidden2,) output 

R-Squared Pearson R-Squared Pearson 

ANN-1 100 0 22,20,10,1 1.0000 1.0000 0.6670 0.8167 

ANN-2 100 10 22,20,10,1 0.8494 0.9216 0.7832 0.8850 

ANN-3 100 0 22,20,1 1.0000 1.0000 0.6625 0.8139 

ANN-4 100 10 22,20,1 0.8625 0.9287 0.7883 0.8879 

ANN-5 200 0 22,20,10,1 1.0000 1.0000 0.5333 0.7303 

ANN-6 200 10 22,20,10,1 0.8124 0.9013 0.7986 0.8936 

ANN-7 200 0 22,20,1 1.0000 1.0000 0.5875 0.7665 

ANN-8 200 10 22,20,1 0.8624 0.9286 0.7995 0.8941 

ANN-9 500 0 22,20,10,1 0.9972 0.9986 0.5847 0.7646 

ANN-10 500 10 22,20,10,1 0.8443 0.9189 0.7962 0.8923 

ANN-11 500 0 22,20,1 0.9959 0.9979 0.4262 0.6529 

ANN-12 500 10 22,20,1 0.8299 0.9110 0.7778 0.8819 
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Table 4 shows the results of ANN modelling, indicating the amount of training data, the 
amount of data used as a test set, the topology of the network and the training and validation 
accuracies.  The network is structured as a series of columns of nodes, with input into the left-
hand column and output from the right-hand column, and hence the topology is defined by the 
numbers of nodes in each column or layer.  In the mechanism under investigation here, there 
were 22 input nodes (link lengths and pivot positions) and 1 output node (maximum 
acceleration), and two arrangements were used for the intermediate ‘hidden’ layers, of either 
one layer of 20 nodes or 2 layers of 20 and 10 nodes respectively.  The accuracies are quoted 
as both R-squared and Pearson correlation coefficients, where a score of 1 indicates perfect 
agreement between predicted and actual output and an inverse relationship is indicated by a 
score of 0 or -1 for the R-squared and Pearson respectively.  The R-squared value is simply 
the square of the Pearson value, however both are commonly used and hence both are 
included here. 

The accuracies of each model were evaluated using both the training dataset and a separate 
hold-out validation dataset.  This method of validating model accuracy is sub-optimal, as 
discussed earlier, and suffers from high variance as highlighted by Reich [12].  The more 
suitable Cross-validation (as discussed in section 4.2) requires a range of models be created 
using differing data samples, and as training (period taken to fully complete model creation) 
can take a considerable time, in certain cases a period of days for an ANN model.  Thus the 
decision was taken to forgo cross-validation of the purposes of his example study.  It is 
suggested that cross-validation should be used where practicable in preference to hold-out 
validation. 

There are signs of overtraining within the ANN models, where those models created without 
the use of a separate test set were seen to have greater disparity between training and 
validation accuracy.  For example, models ANN-7 and ANN-8 were created using identical 
means except for the use of a test set comprising 10% of the available training data for model 
ANN-8.  Despite this reduction in training data volume, ANN-8 has an R-squared value for 
validation of 0.7995 compared to 0.5875 for ANN-7, although ANN-7 has a training accuracy 
of 1 compared to 0.8628 for ANN-8.  The variance in accuracy between models created with 
either 1 or 2 hidden layers is suggested to be inconclusive, as there are cases where models 
with 2 hidden layers have greater validation accuracies than those with 1 hidden layer 
(compare ANN-9 and ANN-10 against ANN-11 and ANN-12) whereas there are situations 
when the opposite is noted (ANN-5 against ANN-7). 

The range of models present a number of options in terms of selecting a suitable information 
extraction candidate.  The model with the highest validation accuracy was selected, in this 
case model ANN-8 as shown in Table 4.  The following section discusses the methods of 
information extraction, and when applied to an ANN model in subsequent information 
comparison sections the information from the ANN model will be taken from model ANN-8. 

4.4 Information from DM Models 
As mentioned previously, the methods of information extraction are notably different for both 
DTI and ANN models.  DTI models are constructed by consideration of a measure called an 
information gain, which is simply a metric describing how successfully the data is split by a 
given logical condition.  Each possible logical condition is evaluated, and the most successful 
conditions in terms of dividing the data are credited with a high score for information gain, 
where successful division is considered to be that which most equally divides the data.  By 
selecting the logical condition with the highest information gain (the one that most 
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successfully divides the data), the algorithm has provided the greatest gain in information.  
The selected logical condition should (if binary) divide the data into two equally sized chunks, 
and should avoid the situation where only a small portion of the data is separated from the 
bulk by the logical condition.  This infers that the logical condition chosen at the upper levels 
of a tree (the logical conditions selected early on) has the greatest influence upon system 
output, as it provides the greatest gain in information when seeking to predict the output. 

The rationale that those logical conditions nearest to the top or root of the tree exert greatest 
influence upon tree (and hence system) output is used in the extraction of information.  This 
method is simple in logic and implementation. 

 

 

Figure 3 Decision Tree for Model DTI-3 

Figure 3 shows a truncated tree for model DTI-3, as defined in Table 3.  This tree is truncated 
for reasons of space, as the full tree is approximately four times larger.  By starting at the root 
node, numbered node 0 in Figure 3, and proceeding along the branches according to the 
logical conditions at each node, a decision is reached at a leaf node.  By scoring each 
parameter based upon its occurrence within the tree, and attaching greater weight to 
occurrences closer to the root node, an indication of the influence of that parameter upon 
system performance can be obtained.  These scores are defined here as “significance metrics”. 
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Table 5 Calculation of DTI Significance Metric for Model DTI-3 

Parameter Additions to Metric Summed metric

P4_y 1 + ¼ + ¼ 1.5 

P3_y ½ + ½ + 1/8 1.125 

L5b 1/8 + 1/8 + 1/8 0.375 

L10 ¼ 0.25 

L5a ¼ 0.25 

P4_x 1/8 + 1/8 0.25 

 
Table 5 shows how the significance metric for DTI-3 is computed.  The parameters are 
weighted according to the proximity to the root node, which is the node at which the entire 
tree branches from (node 0 in Figure 3).  The parameter used in the logical condition at the 
root node is afforded a weighting of 1, at the next level a weighting of ½, at the next level a 
weighting of ¼, and so on until the leaf nodes are reached.  These weightings are summed 
across all occurrences of each parameter within the tree.  This score is qualitative, rather than 
quantitative, hence the ranking of the parameters is of greater interest than the specific scores. 

Information from ANN Models 
The method of information extraction for the ANN models follows similar lines to the 
analytical model, using a sensitivity analysis to extract information.  The method of 
sensitivity analysis used within this research is that which is contained within the Clementine 
DM software package, for which greater detail is given by Watkins [13].  The algorithm 
considers each input parameter in turn, and identifies the maximum and minimum values that 
are seen for that parameter within the dataset.  Three further values are computed at 25%, 
50% and 75% of the range between the minimum and maximum.   Each instance within the 
dataset is then passed through the network in turn, and the parameter in question is held at 
each of the pre-computed 5 values and the output of the network recorded at each of these 5 
values.  The variation in output seen across these 5 values, in effect the greatest difference 
between the 5 output values, is recorded.  This process is repeated using each instance in the 
dataset.  The variations in output across all of the instances is then summed and normalised 
(in effect computing the average variance across all instances).  This process is then repeated 
for each parameter in turn.   

5. Comparison of Information 

The information from the analytical model sensitivity analysis had been successfully used 
within industry, and thus was used as a benchmark.  In order to present these results, a 
greyscale is used to indicate the ranking of each parameter, with parameters most influential 
upon system performance being located at the top of the list.  The shade of gray attached to 
parameters in the ANN and DTI information columns correlate to the greyscale used in the 
analytical model information column.  
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Table 6 Comparison of Information Extracted from Analytical and DM Models 

Deterministic Model 

Sensitivity Analysis 

ANN  

Sensitivity Analysis 

DTI  

Significance Metric 

L5b  P4_y  P4_y  

L3  P3_y  P3_y  

L4  L5b  L5b  

L2  P4_x  P4_x  

L3a  P3_x  L10  

L7a  L3  L5  

 

Key 

Higher rank in analytical model Lower Rank in analytical model

      

 
Table 6 shows the comparison of extracted information, where the greyscale discussed 
previously is used to highlight correlations in the rankings.  It can be seen that the pivot points 
are most influential in the DM model rankings, but do not appear in the analytical model 
rankings.  It is not clear why this should be the case, it is suggested that the manner in which 
the constraint modeller SWORDS fulfils constraints might have an effect but investigation of 
this has not yielded any results.  It is noted that both the ANN and DTI models are prone to 
this anomaly, and this consistency suggests that both are describing a genuine relationship 
within the data, further suggesting that the root of the problem might lie in the manner in 
which the constraint modeller generated the data for DM modelling. 

Table 7 Comparison of Information Extracted from Analytical and DM Models Excluding Pivot Points 

Deterministic Model 

 Sensitivity Analysis 

ANN  

Sensitivity Analysis 

DTI  

Significance Metric 

L5b  L5b  L5b  

L3  L3  L10  

L4  L2  L5  

L2  L1  L7  

L3a  L6  L11  

L7a  L9  L9  

 

Key 

Higher rank in analytical model Lower Rank in analytical model

      

 
Table 7 shows the comparison of extracted information when the pivot point information is 
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removed from the ranked lists for both the DTI and ANN models.  It can be seen that the 
information offers much greater correlation, where the same parameter is listed as most 
influential upon system performance in all 3 rankings.  The ANN model ranking correlates 
with the analytical model ranking for the second and third most significant parameters, 
however the DTI ranking does not feature any of the remaining top 6 seen on the analytical 
model ranking. 

Consideration of Table 2 suggests that the sensitivity analysis metrics for parameters placed 
4th or lower in the analytical model rankings are very similar, ranging fro 5.6 to 9.2 over 7 
places as opposed to 14.8 to 52 over the top 3 rankings.  This suggests that there is a minimal 
difference in influence between the 3rd through 10th ranked parameters, where such lack of 
clear distinction perhaps explains the lack of correlation between the ANN model ranking and 
the analytical model ranking. 

It is suggested that the method of information extraction from the DTI model requires further 
consideration, where only the most significant parameter was seen to correlate with the 
analytical model ranking.  It is suggested that reconsideration of the weightings attached to 
parameters at each level of the tree might improve the veracity of the extracted information.  
It is further suggested that the situation might be exacerbated by the relative instability of DTI 
algorithms, where small changes to the dataset or algorithm settings can lead to vastly 
different model structures due to the recursive construction of the model.  In essence, any 
changes at the higher level nodes can result in notably different structure to the lower levels of 
the tree, and in cases where the information gain is similar for numerous possible logical 
conditions, it is feasible that changes to the data sample ort to algorithm parameter might act 
to significantly change the structure of the model and hence the extracted information. 

Efforts to address this instability have been trialled, where the rationale of methods of 
aggregating predictions from DM models have been applied to aggregating extracted 
information.  It is anticipated that these results will be published in due course. 

6. Conclusion 

A sensitivity analysis of an analytical model provided industrially-validated information 
regarding the ranking of parameters most influential upon system performance.  This 
analytical mode was also used to generate data representing manufacturing data, where the 
effect random variation within tolerance of the parameters of a product could be related the 
performance of that product or system. 

This data was used to generate a range of DTI and ANN models, from which one model of 
both types was selected for use in providing information.  Such information was extracted 
from the ANN model via sensitivity analysis and from the DTI model via consideration of the 
structure of the constructed tree.  This information was presented in the form of a ranked list, 
indicating the parameters most influential upon system performance. 

This information was compared against information from the benchmark analytical model.  
Three of the top four ranked parameters were consistent across the information from the ANN 
model and the analytical model, and the top ranked parameter was consistent for both the DTI 
and analytical model.  It was suggested that the instability of the DTI model and the relatively 
unrefined method of information extraction from this model prevented the correlation from 
being as good as that for the ANN model. 
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Although applied to sensitivity analysis, the methodological analysis described in this paper 
shows both how a DM approach can be used to represent and create models of engineering 
systems, with emphasis upon the analysis of manufacturing data, and that such models do not 
require recourse to the use of analytical computational modelling approaches.  Methods of 
creating and interrogating DM models has been proposed, and the next stage of work will 
seek to apply these methods to the analysis of genuine manufacturing data. 
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