
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07
28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

DISTRIBUTED DATA SOURCES FOR LIFECYCLE
DESIGN
Vijitashwa Pandey 1, Deborah Thurston1, Khushboo Kanjani2 and Jennifer Welch2

1University of Illinois at Urbana-Champaign
2Texas A & M University

ABSTRACT
The rapid expansion of the cyber-infrastructure has resulted in a wealth of data that previous
generations of product designers could only dream of. It is now possible to obtain real-time data at all
points in the product lifecycle. But without an organized framework for gathering, analyzing and
making design decisions with it, this information goes to waste. This paper presents a method for
tapping into this data without being overwhelmed by it. An ideal case study is product design for cost-
effective compliance with product take-back laws. A previously developed constrained optimization
model indicates that data from sources throughout the product lifecycle can be used make better
design decisions regarding component reuse and remanufacture which simultaneously decrease cost
and increase customer satisfaction. However, computational issues previously limited the analysis to a
single set of static, industry average values for model inputs. Real-world implementation requires
dynamic input from a variety of widely distributed data sources, ranging from material suppliers to the
customer. However, existing computer programming methods that efficiently utilize widely distributed
data are limited. This paper makes advances on two fronts. First, a decision model is presented which
effectively utilizes distributed data sources regarding both cost and customer preferences. Second, the
system is made fault tolerant by using the existing distributed shared memory infrastructure which
involves the concepts of replicated data and quorums. Case study results indicate that information
from distributed sources can be efficiently acquired using multiple replicas of data and a probabilistic
read and write, leading to improved customer satisfaction.

Keywords: Product take-back, distributed data, optimization, tradeoff decisions

1 INTRODUCTION
It is now possible to obtain real-time data at all points in the product life-cycle, from conceptual
design, prototyping, materials acquisition, supply chain, manufacturing, assembly, inventory, point-of-
purchase, consumer use and disposition. This data conveys a wealth of up to date information,
including costs and customer preferences. It could potentially be used to design better products, but its
sheer volume can overwhelm a designer. Two things are needed; an analytic framework for
determining which data are relevant and for using the data effectively during the design process, and
also a computational approach to gathering, storing, and transmitting data among distributed sources.
This paper presents a solution to these problems, and employs a design for product take-back case
study. The next section provides background on the case study and on the computational approach
employed, followed by an illustrative example. The final section presents results and discussion.

2 BACKGROUND
This section provides a brief background on related research in product design related to take-back
legislation, and introduces the design model on which this paper expands. Product take-back laws
have been enacted in the European Union and Japan. In the United States, twenty four states have
active or pending product take-back legislation. For example, the Waste Electrical and Electronic
Equipment (WEEE) directive sets the target of recovery and reuse at 75% by weight of post-use home
appliances and computer products [1]. Similarly a target of 85% recovery and 80% recycling by
weight was set for end-of-life vehicles [2]. These laws aim to “internalize the externalities” to some
degree by making the manufacturer and/or consumer responsible for recovery and possible reuse.

ICED’07/475 1

Designers1 need to consider post-use alternatives during the product design process in order to comply
with take-back legislation cost-effectively. Several such models have been developed. Ferrer [3]
presents a case study on personal computers which demonstrates that remanufacturing computers is a
viable option. Sandborn and Murphy [4], present a model for incorporating economic and
environmental issues into product design. Campbell and Hasan [5] present a model for determining the
feasibility of recycling by tracking disassembly and monetary gain for recyclers. Bhamra et al., [6],
demonstrate the potential benefits of component level reuse and remanufacturing.
Models discussed so far are limited as they employ industry average static data. Real life applications
include dynamic data inputs from various sources. Incorporating these inputs into the decision models
is the next logical step in long range product portfolio planning. However, limited computational
capabilities have restricted research in this area. In this paper we propose a model to make product
decisions incorporating dynamic data input from distributed sources. The model is formulated in such
a way that it is fault tolerant and highly available.
The work on which this paper builds [7], [8], combines environmental impacts with cost and reliability
into a long range product planning model shown in Figure 1. Starting from the upper left and moving
clockwise around Figure 1, upon take-back, 88 components of one product are analyzed, and four
possible decisions are made about each component for a second lifecycle. The possible decisions
include using a new component, reuse, remanufacture, or recycle.

Figure 1: Design Optimization for Component Reuse, Remanufacturing or Recycling

The eight operations shown in Figure 1 are then considered for their resulting cost, environmental
impact and product reliability. Four market segments are considered, so the designer can create the
optimal set of products that meet the specific preferences of each segment, and simultaneously exploit

Personal Computer

Remanufacturing

Manufacturing
Disassembly

Assembly Recycling

Collection Material
Processing

FOUR DECISIONS ONE PRODUCT 88 COMPONENTS
PER COMPONENT

Use new? Reuse?

Remanufacture? Recycle?

EIGHT OPERATIONS

THREE ATTRIBUTES FOUR MARKET
SEGMENTS

Maximize total

portfolio value over
several lifecycles for
the customer groups.

• Technophile
• Utilitarian
• Green
• Neutral

• Cost
• Environmental Impact
• Reliability

Next lifecycle

Raw Materials

Disposal To Landfill

ICED’07/475 2

their willingness to pay for various features. Market segmentation is a powerful tool for characterizing
the preference distribution of the population in general. While it would be impractical to document and
cater to the preferences of individual customers, dividing them into a manageable number of segments
was shown to improve total customer satisfaction. Total portfolio utility over several market segments
and lifecycle is then maximized. Further work [9] indicated that adopting leasing as a business model
gave the designer greater control over the take-back process, and improved the optimal solution.

3 DISTRIBUTED DATA
The data sources of interest to our model are widely distributed. They fall into two general categories.
The first is data that has system-wide implications, such as updated material and manufacturing
process cost parameters. The second category is customer-specific preference information. Both data
types are widely distributed and change dynamically. It is important to periodically recompute the
solution to the optimization problem with the latest values of the parameters.
We want the data to be available, even in case of failures in the computer network. A well-known
approach (e.g., [10]) to providing highly available shared data in computer systems is to use
replication: for each logical (or virtual) piece of data, there are actually multiple copies of it, stored at
various locations in the network. An obvious cost of replication is the use of additional storage.
The potential benefits of replication are increased reliability, since there is more than one copy (so if
one copy becomes unavailable, say because the computer hosting the copy crashes or because that part
of the network is partitioned from another part), as well as the ability to access a copy that is close by,
thus saving on communication costs. However, in order to realize these benefits, a protocol for
keeping the copies consistent is needed, and thus induces additional costs, most notably additional
communication costs.
A relatively recent approach to reducing the communication costs associated with replicated data is to
use probabilistic quorums (a quorum is a subset of copies out there) [11]. This method reduces the
communication cost, but causes read accesses to the shared data to return out-of-date information with
a small probability. Lee and Welch [12] explored applications that could tolerate infrequent out-of-
date information while exploiting the benefits of the probabilistic approach to replicated data. We
propose using this approach to collect, distribute, and maintain the data sources needed for the design
optimization problem.
In more detail, our proposed system architecture is the following. We have a collection of computing
entities (processes), which communicate with each other by passing messages over a network. We
will have software running on top of this message passing system that implements a set of shared
variables using probabilistic quorums, in order to gain the benefits discussed above (increased
availability and fault-tolerance).
Some of the processes monitor a data source (such as a remanufacturing facility updating processing
costs) whereas others perform the computation to solve the optimization problem. Each data source
writes the current value of its parameter into a unique shared variable whenever the value changes.
(Reminder: at the lower layer, this "write" causes messages to be sent to the processes hosting a
certain subset of the replicas designated for this virtual shared variable.) When the optimization solver
decides it is time to (re)compute the solution, it reads all the data sources. (Reminder: at the lower
layer, each such "read" causes messages to be exchanged between the solver process and the processes
hosting a certain subset of the replicas.)
With high probability, the values read from the data sources using this software layer are the most up-
to-date values. However, even if they are not up-to-date, in this application the impact on the optimal
solution is expected to be minimal since the data of concern, such as remanufacturing cost estimates,
are not expected to change significantly over very short time periods. This application can tolerate
stale data while taking advantage of the benefits.

4 DISTRIBUTED DATA AND DESIGN DECISION MODEL
This section further builds upon the model for sustainable design introduced earlier [8]. The model
employed industry average values for all parameters. Computational limits restricted the application to
static inputs implementable on a single personal computer. Real world applications, however, require
dynamic inputs from widely distributed data sources. Rapid expansion in computing and database

ICED’07/475 3

systems in recent years has resulted in a wealth of data. Keeping this in mind, this paper extends the
model in various ways:
1. Linking the distributed data sources shown in Table 1 (columns 1 and 2) directly into the design

decision model.
2. Updating the distributed data.
3. Reformulating the design model to accommodate widely distributed data that is being

continuously updated, as shown in column 3.
4. Making the data sources fault tolerant by replicating them and using the quorums to reduce the

cost of replication.

Table 1. Distributed data sources, their information and integration in design model

Distributed
Database Source

Types of Information Decision Model Integration

Material Supplier Updated cost and availability of
materials

Costs of components updated
accordingly

Component
manufacturer,
Assembler

Updated cost of manufacturing and
assembly

Costs of manufacturing and
assembly updated, cost of
component updated

Product take-back
center operations

Updated information on time and
expense of performing different
operations

Updated collection, disassembly,
remanufacture costs

Product take-back
center: Wastewater

Updated wastewater treatment
requirements

Updated disposal costs,
Environmental Impacts

Customer Preferences, willingness to pay Objective function attribute
scaling factors

Once the products are collected from the customers, four post recovery decisions at the component
level can be made, defined as follows:

• New: The recovered component(s) cannot be reused at all and must be disposed. A second
generation product would have a new component in place of the old one.

• Reuse: The recovered component(s) can be directly reused after minor cleaning and
refurbishment.

• Remanufacture: The recovered component(s) requires some rework (such as milling)
before it can be reused in the second generation product.

• Recycle: Although the recovered component(s) cannot be reused in its current form,
materials (metal, plastic) can still be cost effectively extracted and reformed.

Each of the decisions described above will in turn have different operations associated with it, as listed
in Table 2. These operations have different costs and environmental impacts for different components
depending on the material used, weight and ease of disassembly. Moreover, performance of the next
generation product will also be determined in part by these operations.

Table 2. Operations associated with four post recovery decisions

New Reuse Remanufacture Recycle
Collection

Disassembly
Disposal

Material processing
Manufacturing

Assembly

Collection

Collection
Disassembly

Remanufacturing
Assembly

Collection
Disassembly

Recycling operations
Manufacturing

Assembly

ICED’07/475 4

4.1 Design Optimization Formulation
The decision model we employ is presented in equations 1-9. The major elements are described in the
following paragraphs, starting with a description of the constraint equations 2-4, which embody the
cause and effect relationships between design decisions and the resulting component attributes of cost,
perceived age, and environmental impact. These three attributes are determined by the decision that
was made regarding its use after take-back. Let di denote the binary design decision variable such that:

d1 = 1, if the component is new, 0 otherwise.
d2 = 1, if the component is reused, 0 otherwise.
d3 = 1, if the component is remanufactured, 0 otherwise.
d4 = 1, if the component is recycled, 0 otherwise.
Subject to: 14321 =+++ dddd

Constraint equation 2 gives us the cost of a product for a particular customer segment p based on the
component level decisions for that segment. Overall product cost is the summation of costs associated
with each individual component. The cost of each component is determined by the costs incurred
while performing individual operations involved in manufacturing. In the case of a new component,
for example, the recovered component would have to be collected, disassembled and disposed before
new material is utilized to manufacture the component. This gives us:
Cost of a component = d1 (Cost of new component) + d2 (Cost or reused component) + d3(Cost of
remanufactured component) + d4(Cost of recycled component)

Maximize ()() ()() (()[]11111
,,,,,,

4

1

−+++=∑
=

ppEpEpppApApppCpCp
pp

ptotal EUkKAUkKCUkK
K

fU) (1)

Subject to:

()∑ ∑∑∑
= ===

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
+=

s

i n
niipi

n
nipiipi

n
niipip CCdCdCdCCdC

1

5

2
7,,4

6

3
,,34,,2

5

1
8,,1 (2)

((sip RRRRA ,...,1−=)) (3)

()∑ ∑∑∑
= ===

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
+=

s

i n
niipi

n
nipiipi

n
niipip EEdEdEdEEdE

1

5

2
7,,4

6

3
,,34,,2

5

1
8,,1 (4)

ib

i

ddd

i eR
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
−

= θ
432 1.05.0

 (5)
max,min, ppp CCC ≤≤ for p = (1,…,4) (6)

max,min, ppp AAA ≤≤ for p = (1,…,4) (7)

max,min, ppp EEE ≤≤ for p = (1,…,4) (8)

1,,4,,3,,2,,1 =+++ pipipipi dddd (9)

[]1,0,,, ,,4,,3,,2,,1 ∈pipipipi dddd (10)

Where:
C1,i = New material acquisition costs for component i .
C2,i = Manufacturing/forming or remanufacturing costs for component i.
C3,i = Assembly costs for component , a function of the processing time required to assemble component i.
C4,i = Take-back costs for component i incurred by the manufacturer under product take-back legislation.
C5,i = Disassembly costs for component i, a function of the time to disassemble the product.
C6,i = Remanufacturing costs (inspection, testing, and repair or replacement) for component i.
C7,i = Cost of recycling operations for component i, a function of the energy required to melt the material.
C8,i = Disposal costs associated with placement in a landfill for component i.
E1,i = Environmental impact resulting from the transport of materials to the facility for materials processing.
E2,i = Environmental impact of manufacturing operations.
E3,i = Environmental impact of assembly operations.

ICED’07/475 5

E4,i = Environmental impact due to the collection and transportation for take-back purposes.
E5,i = Environmental impact of disassembly and separation processes.
E6,i = Environmental impact of remanufacturing operations including inspection, testing, and repair.
E7,i = Environmental impact of recycling operations including melting down used material.
E8,i = Environmental impact of disposal in a landfill.
p = Customer group (1 = Neutral, 2 = Technophile, 3 = Utilitarian, 4 = Green)
s = number of components in the product.
ti = number of years component i to be installed has been in use before.
Kp = Normalizing constant for customer p.
kC,p = Scaling constant corresponding to cost for customer p.
kA,p = Scaling constant corresponding to age for customer p.
kE,p = Scaling constant corresponding to environmental impact for customer p.
fp = Fraction of customers of type p.
vi = Criticality associated with the ith component.
R = Reliability function for the computer based on the component reliabilities and failure mode assumed.
R = Reliability function for the computer based on the component reliabilities and failure mode assumed when
all components are the same age.
θi = Characteristic life of the component i.
bi = Slope of the Weibull reliability curve for component i.
d1,i,p = Fraction of components of type i the are new for customer type p.
d2,i,p = Fraction of components of type i the are reused for customer type p.
d3,i,p = Fraction of components of type i the are remanufactured for customer type p.
d4,i,p = Fraction of components of type i the are recycled for customer type p.

Equation 3 shows how the individual ages of components are aggregated into the perceived age of the
whole product. The model allows for components that are recovered from/utilized in the same product
to have different ages. Age (rather than reliability) is used as a measure of performance because it is
easier for customers to relate performance to age rather than physical reliability. This is important in
the case of electronic components, since they become obsolete quickly. It also simplifies finding the
overall product attributes from those of individual components as discussed below. Age of a collected
component is given by how long the customer owned it before it was returned. If a component is
reused or remanufactured after collection, its reported age would be how long it has been in the market
before. On the other hand if a new or recycled (manufactured from recycled materials) component is
supplied it would have an age of 0 years. In practice, however, products made from recycled
components perform slightly worse than new, and remanufactured components perform slightly worse
still. To account for these we assume that recycling recovers 90% (and not 100%) of the value while
remanufacturing recovers 50% of the value of the component. This gives us:
Age of a component = (d2 + 0.5d3 + 0.1d4) (Time the component has been in use)
To find the overall perceived age of the product, first the product reliability is found using the failure
mode information. The failure mode we assume is when any of the critical components (motherboard,
hard drive or video card) fail, or any three of the other components fail simultaneously. A reliability
function, R (equation 3), is created using this failure mode information to map the age of the
components to product reliability. Once the ages of the components are known, the product reliability
is found and mapped back to the same function when all the components are assumed to be the same
age. Finding this inverse gives the age of the product aligned with that of a product that has never been
disassembled (all components are the same age).
Equation 4 shows how the total environmental impact is calculated from the environmental impacts of
each operation performed on each individual component. For example the bulk of the environmental
impact when a component is reused is its collection and transportation. On the other hand when a new
component is to be manufactured, the recovered component would have to be collected, disassembled
and disposed before new material is utilized to manufacture the new component. The environmental
impacts of the operations are summed to arrive at the environmental impact of the component:
EI of a component = d1 (EI of new component) + d2 (EI or reused component) + d3(EI of
remanufactured component) + d4(EI of recycled component)

4.2 Objective Function
The objective function shown in equation 1 maximizes the sum of overall utilities of all the customer
groups. Market segmentation is defined on the basis of the customers' preference for a certain attribute

ICED’07/475 6

over others. The preference for an attribute is reflected in the scaling constant one typically assesses
during the standard lottery method. The values can also be determined from surveys of customers
returning the products. In the case study that follows, this is implemented using a randomly chosen
sample of customers. The different groups are defined as follows:

Table 3. Market segmentation based on relative preference for attributes

Customer group Preference relation

Technophile),max(25.1 envcostage kkk ≥

Utilitarian),max(25.1 envagecost kkk ≥

Green),max(25.1 agecostenv kkk ≥

Neutral Everyone else

The classifications shown above are mutually exclusive and collectively exhaustive. In this study we
also account for the relative number of customers of a certain type in the population. This is calculated
by finding the fraction of customers of each type in the chosen sample size. The fractions are
extrapolated using the overall demand to find how many products of a certain type are needed.
Different utility functions for the customer groups are also defined. The utility functions for the range
of values of an attribute that a customer is willing to buy the product are assumed linear. The
acceptable ranges for individual customer segments are also acquired from surveys of customer
returning the products. When combining the ranges acquired from different customers, 90%
confidence intervals are used assuming upper and lower bounds are normally distributed. This was
done to avoid being overly influenced by customers that provide extreme bounds.
Once the acceptable attribute ranges and scaling constants are known, utilities for each customer group
can be calculated. The overall utility for each customer group considers the combined cost, age and
environmental utilities of that group. In order to reflect the dynamic nature of willingness-to-pay as
one moves through the feasible region, multiattribute utility analysis is used to compute the overall
utility of the product portfolio. The multiplicative form of the multiattribute utility function is used.
The utilities for different groups are aggregated using a linear additive function using the fractions of
customers of each type. In equation 1, fp’s, where p = 1,2,3,4 are the fractions of neutrals,
technophiles, utilitarians and greens in the customer base. The decision problem is to maximize this
weighted utility over the customer groups with component level decisions as decision variables. The
authors recognize the difficult issues involved in the aggregation of utility. In this case, we assume the
group members and range of outcomes are such that the difficulties are minimized.

5 CASE STUDY
As mentioned earlier, replication allows for highly available data which is essential in cases where
some of the servers are busy or not available. In this section we provide a case study to show how
shared memory can be used in a product take-back environment.

5.1 System architecture and formulation
The system architecture is shown in Figure 2. Five distributed data sources provide information about
the product attributes (manufacturing facilities, indicated in green) and customer preferences
(indicated in red). The designer (manufacturer) reads from the shared memory the data provided by the
distributed sources. The computations that follow aim at solving the optimization problem that
maximizes total portfolio utility of the customers. The decisions are whether to reuse, remanufacture
or recycle a recovered component or simply discard it and replace it with a new one. The customer can
also read and perform an optimization to find the best reuse decisions.
Each data source writes the current value of its parameter into a unique shared variable whenever the
value changes. This write causes messages to be sent to the processes hosting a certain subset of the

ICED’07/475 7

replicas designated for this virtual shared variable. When the optimization solver decides it is time to
compute the solution, it reads all the data sources. This read causes messages to be exchanged
between the solver process and the processes hosting a certain subset of the replicas.

Distributed data sources

Figure 2: Schematic of the shared memory implementation for distributed data sources

We want to ensure that that the values read from the data sources are the most up-to-date values with
high probability. However, even if they are not up-to-date they need to have a very high probability of
being from the immediately previous time stamp. Our argument is that it would not affect the results
significantly since the attributes (cost and environmental impact) do not drastically change over a short
period of time. If we store each shared variable at 36 replicas and have a quorum size of 10 (so that
each read or write only accesses 10 randomly chosen of the 36 replicas), the probability of reading an
outdated value is 0.02. In order to guarantee that we never get stale data, with 36 total replicas, we
would have to access at least 19 replicas in each read or write, so we are realizing a savings of about
50% in the communication cost by using a quorum size of 10. Furthermore, comparing with data in
Lee and Welch, [12], we estimate that the probability of getting a value that is outdated by more than
one timestamp is essentially 0.
In our case study we simulate the evolution of data over ten time periods. The costs include those
incurred in acquiring raw materials and the manufacturing and/or remanufacturing operations shown
in Figure 1. To investigate the effect of stale data acquired from the shared memory, costs of
electricity, and raw materials like metals and plastics were updated using historical trends. Costs of
performing individual operations like remanufacturing, recycling etc. on components were decreased
steadily by 5% in every cycle. This was done to depict improving manufacturing methods and
economies of scale as remanufacturing volume increases. In all, 25 entries are subject to updating each
cycle, 15 of which correspond to the raw materials and 10 correspond to costs associated with
processing and manufacturing/remanufacturing operations. Environmental impacts resulting from each
operation were calculated using commercially available software Simapro.
The acceptable ranges of attributes that were assumed for the three customer groups are shown in
Table 4. We can see that technophiles perceive cheap products as having low reliability (greater age)

Designer/
Manufacturer

Shared data memory

Probabilistic Write Probabilistic Read followed by
computation

Cost

New component manufacturer. Environmental Impact

Age

kcost

kenv

kage

Reuse facility

Remanufacturing facility

Recycling facility

Customer

ICED’07/475 8

therefore have a high minimum cost of $400 which they are willing to pay. Similarly, the utilitarians
are only interested in low cost alternatives while environmentally conscious green customers have a
wide range of cost ($100 - $1000) they are willing to pay. Technophiles also require high performance
(lesser age) in their products and therefore would not accept products that are perceived to be older
than 1 year. Utilitarians on the other hand require most value for their money. Green customers have a
low upper limit of environmental impacts compared to the other customer groups at 600 millipoints.
Neutrals are assumed to have preferences that lie between those of other customers and do not focus
on any one specific attribute.

Table 4. Feasible attribute ranges for each customer group

Feasible attribute ranges
Customer Group Cost

max,min, ppp CCC ≤≤
Age

max,min, ppp AAA ≤≤
Environmental Impact

max,min, ppp EEE ≤≤
Technophiles $400 - $1000 0 – 1 yrs 333 – 1275 mpt
Utilitarians $100 - $600 0 – 2 yrs 333 – 800 mpt

Greens $100 - $1000 0 – 3 yrs 333 – 600 mpt
Neutrals $100 - $1000 0 – 3 yrs 333 – 800 mpt

Each customer segment's willingness to make tradeoffs is captured by the scaling constants shown in
Table 5. Technophiles are willing to tradeoff low cost and low environmental impact for better
performance (low age). Utilitarians and Greens on the other have high scaling constants associated
with cost and environmental impact respectively. The neutral customer group assigns an equal scaling
constant value of 0.5 to each attribute. The individual attribute utility functions are assumed to be
linear and the ranges within which they are defined are kept constant. The fractions of technophiles,
utilitarians, greens and neutrals (fp’s) in the entire customer base are assumed to be 0.1, 0.4, 0.1 and
0.4 respectively. These fractions are used to combine the multiattribute utilities of individual customer
groups into a total product portfolio utility. In summary, the optimization problem is to find the
decision variables corresponding to reuse decisions (new, reused, remanufactured or recycled) that
maximize the multiattribute utility of the product portfolio as given by equation 1.

Table 5. Independent scaling constants and normalizing parameter

Independent scaling factors Customer
Group Cost Age Environmental

Impact

Normalizing
Parameter, Kp

Technophiles 0.30 0.80 0.10 -0.596
Utilitarians 0.70 0.45 0.35 -0.794

Greens 0.15 0.15 0.85 -0.562
Neutrals 0.50 0.50 0.50 -0.764

5.2 Results
Figure 3 shows the optimal portfolio utility over 10 reads of the data for two cases. The "perfect
information" plot (square shape) shows utility as the cost of raw materials and operations involved in
reusing, remanufacturing and recycling change. This plot assumes the designer has continuous access
to the most up to date, perfect information. The "with probabilistic quorums" plot (diamond shape)
results from a simulation of the shared memory implementation for distributed data sources described
earlier, allowing the possibility of stale data. Any of the values in each cycle could be outdated,
providing stale information. As calculated before for a quorum size of 10 with 36 replicas of variables,
the probability of getting an outdated data value (from an immediately preceding timestamp) is 0.02.
The results illustrate that the calculated utilities are very close to those based on perfect information.
Figures 4 and 5 show the optimal cost and performance (age) for the neutral customer group. As
before, the square shapes depict results based on perfect information, and diamond shapes depict
results using probabilistic quorums which allow a small probability of stale information. It can be
clearly seen that the perfect information and probabilistic quorum values are very close for both cost

ICED’07/475 9

and age. The decrease in cost of the computer is attributable to the manufacturer realizing economies
of scale as time progresses.

0.75

0.65

0.7
Po

rt
fo

lio
 u

til
ity

With
probabilistic
quorums 0.6
Perfect
 Information

0.55

0.5
0 1 2 3 4 5 6 7 8 9 10 11

Iteration

Figure 3: Comparing the maximized utility computed with 1) probabilistic quorums
(information that has a small probability of being stale, and 2) perfect information.

420

400

380

Figure 4: Cost of the computer for the optimal configuration for the neutral customer

computed under 1) probabilistic quorums and 2) perfect information.

We just demonstrated that allowing a small probability of stale information does not affect the results
substantially. One may be tempted to think that further reduction in communication costs could be
realized if we make the probability of getting stale information even higher (by making the quorum size
smaller). To demonstrate that this could lead to suboptimal decisions we could compare the results from
two cases: 1) Quorum size is large enough so that perfect information is available every iteration and 2)
Quorum size is so small that the information is practically not updated at all. One way of doing this
could be to compare the decisions from the first and final iterations, as shown in Table 6, which shows
that the optimal decisions have changed substantially for the four customer groups.

300

320

340

360 C
os

t (
$)

0 1 2 3 4 5 6 7 8 9 10 11

Iteration

Perfect
information

With
probabilistic
quorums

ICED’07/475 10

Figure 5: Age of the computer for the optimal configuration for the neutral customer

1
0.9
0.8

computed under 1) probabilistic quorums and 2) perfect information.

Table 6: Maximized portfolio utility and corresponding decisions in the first and final
iterations

 First Iteration Final Iteration
 Tech Utilitarian Green Neutral Tech Utilitarian Green Neutral

Monitor Reuse Reuse Reuse Reuse Reuse Reuse Reuse Reuse
Floppy Drive New Recycle Reuse New Recycle Recycle Reuse New

Keyboard New Recycle Reman. Recycle New Recycle Reman. Recycle
Hard Drive New Recycle Reuse New New Recycle Recycle New
CD-ROM Recycle Recycle Reman. Recycle Recycle Recycle Reman. New

Motherboard New Reuse Reuse Recycle New Reuse Reuse Recycle
Power Supply Recycle Reuse Reuse Reuse Recycle Reuse Reuse Reuse
Sound Card Reman. Recycle Reman. New New Recycle Reman. New
Video Card Reuse Reman. Reuse New New New New New

Modem Recycle Reuse Reman. Reuse Recycle Recycle Reman. New
Cables Recycle Reman. Reman. Recycle Recycle Recycle Reuse Recycle

Housing Recycle Recycle Recycle Recycle Recycle Reuse Reuse Recycle

Cost ($) 547.72 184.8 170.11 391.84 565.99 183.21 173.96 372.28
Age (years) 0.02 1.6 2.98 0.22 0.03 1.59 2.61 0.16
Env. Impact

(mpt) 926 610.5 537.7 657.4 921.3 607.7 544 659.5

Utility 0.92 0.70 0.32 0.75 0.91 0.71 0.32 0.77

 Portfolio utility Portfolio utility

0.706 0.711

0.92 0.70 0.33 0.76

Portfolio utility
Effect of applying the decisions from the first iteration when data has

changed.

0.710

Elements highlighted in yellow indicate differences in the optimal decision variables. In addition, the

0
0.1
0.2
0.3
0.4
0

0
A

ge
 (y

ea
rs

) 0.7
.6
.5

0 1 2 3 4 5 6 7 8 9 10 11
Iteration

Perfect
information

With
probabilistic
quorums

ICED’07/475 11

product portfolio utility has increased from 0.706 to 0.711. If the decisions were prescribed using
information from only the first cycle (no updating) there would be a decrease in utility as shown. Even
though there is improvement compared to the first cycle because the cost decreases, it is not optimal for
the most current data, as shown.

6 SUMMARY
Our results show that updating information frequently helps designers make better decisions. We also
demonstrated that a small probability of obtaining outdated information did not affect the results
substantially. It was seen that a shared memory approach can be easily used for data that does not
change drastically over a short period of time. The deviations from the assumption of perfect
information were shown to be minimal. Information acquired using multiple replicas of data and
probabilistic read and write results in reduced communication costs. By using a quorum size of 10
instead of 19 (which would guarantee up-to-date information) we reduced communication costs by
about 50%. Having multiple copies of data also allows for robustness against partial system failure. It
was also demonstrated that reusing components reduces cost and environmental impacts over several
product lifecycles. In the case where only small components are replaced with new ones, performance
can be improved with little effect on cost and environmental impact. As manufacturers devise better
ways to reuse and remanufacture components, they can compete effectively by introducing selected
new components, as demonstrated in our case study.

Acknowledgment
This material is based upon work supported by the National Science Foundation under grants DMI-0500265 and
DMI-05-00464. Any opinions, findings, conclusions or recommendations are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES
[1] “Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on Waste

Electrical and Electronic Equipment”. Official Journal of the European Union, L37/28 and L37/29.
[2] “Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life

vehicles” Official Journal of the European Communities. Article 7.
[3] Ferrer, G., 1997, “The Economics of Personal Computer Remanufacturing,” Resources, Conservation and

Recycling 21, pp 79-108.
[4] Sandborn, A., and Murphy, C. F., 1999, "A Model for Optimizing the Assembly and Disassembly of

Electronic Systems," IEEE Trans. on Electronics Packaging Manufacturing, vol. 22, no. 2, pp. 105-117.
[5] Campbell, M.I. and A. Hasan. Design Evaluation Method for the Disassembly of Electronic Equipment,

ICED '03, Stockholm, August 2003.
[6] Bhamra T.A., S. Evans, T.C. McAloone, M. Simon, S. Poole, A. Sweatman, 1999, "Integrating

Environmental Decisions into the Product Development Process: Part 1," Ecodesign , p. 329.
[7] Thurston, D. L., “Design Evaluation and Optimization of Multiple Attributes,” Proc. of 1991 International

Conference on Engineering Design - ICED 91 (Zurich, Switzerland, August 1991).
[8] Mangun, D. and D. L. Thurston, 2002, “Incorporating Component Reuse, Remanufacture, and Recycle into

Product Portfolio Design,” IEEE Transactions on Engineering Management, Vol. 49, No. 4.

[9] Thurston, D. and J. de la Torre, “Leasing and Extended Producer Responsibility for Personal Computer
Component Reuse”, International Journal of Environment and Pollution, Vol. 29, No. 1/2/3, pp. 104-126.

[10] Gifford D.K., "Weighted Voting for Replicated Data," Proceedings of the 7th ACM Symposium on
Operating System Principles, pp. 150 - 162, 1979.

[11] Malkhi D., Reiter M., Wool A. and Wright R., "Probabilistic Quorum Systems", Information and
Computation, vol. 170, no. 2, pp. 184-206, November 2001.

[12] Lee H. and Welch J.L., "Randomized Registers and Iterative Algorithms," Distributed Computing, vol. 17,
no. 3, pp. 209-221, March 2005.

Contact: D. L. Thurston
University of Illinois at Urbana-Champaign
Department of Industrial and Enterprise Systems Engineering
104 S. Mathews

ICED’07/475 12

Urbana, IL
USA
Phone 217-333-6456
Fax 217-244-5705
thurston@uiuc.edu
www.iese.uiuc.edu

ICED’07/475 13

