
DESIGN PROCESSES 229

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2008
Dubrovnik - Croatia, May 19 - 22, 2008.

PRODUCT DEVELOPMENT PROCESS
OPTIMISATION WITH HEURISTICS METHODS

T. Rick, I. Groma and T. Bercsey

Keywords: task scheduling, resource allocation, DSM, product
development

1. Introduction
The subject of product development is the product that is designed to fulfill some kind of needs. The
process (between the need and an actual product that is realized physically) has been a popular subject
of research and it is being actively investigated in recent years. This area of research can be divided
into two main parts: descriptive and prescriptive definitions.
Descriptive definitions do not offer specific processes. Examples are Pugh's Total Design theory, Suh's
Axiomatic Design, and Tomiyama and Yoshikawa's General Design Theory, the TRIZ created by
Altschuller, and Linde’s and Hill's WOIS – Contradiction-Oriented Innovation Strategy [Clement
2001].
On the contrary, prescriptive definitions do give us the list of tasks that need to be done in order to
perform planning. Theories yielding to such processes were formulated by Hubka, Koller, Roth,
Rodenacker, and Pahl and Beitz, In Europe, the most widely accepted theory is the process suggested
by VDI 2221 [VDI-Richtlinie 2221 1986]. The advantage of VDI 2221 is that it can be applied to both
the entire product and any of its components or smaller parts. On the other hand, the real processes are
affected by various further factors, such as the number and type of the design (new, variant, or fitted
construction), and the duration and cost. Numerous approaches were developed to reduce product
development time, such as that of concurrent engineering, simultaneous engineering and frontloading,
each of which attempt to optimize development duration by parallel tasks, strengthening teamwork,
and the early availability of information.
The theories and methods mentioned above do little to aid the planning and modeling of product-
oriented design processes. We need a method that defines the design process based on and according
to the structure and features of the product to be designed [Reinertsen 1998]. This method needs to be
able to represent the necessary iterations of the product development process and to handle the
planning processes of products with various size and complexity – in other words, it is able to
represent the groups of related elements that are best to be assigned to the same development teams. It
should also support the creation of a project plan and the handling and assignment of resources – both
quintessential for management. One approach that makes all of these possible is the Design Structure
Matrix (DSM) [Steward 1981].

2. Design Structure Matrix
The DSM approach is based on the idea that one can change the order of tasks based on the
relationships among the development processes of the sub-components. By reordering, one can find a
sequence of tasks that may contain fewer cycles and identify those tasks that can be performed in

 DESIGN PROCESSES 230

parallel. This optimum signifies the most favorable assignment of total person-hours and total cost,
and the final project plan may take less time if there are tasks that can be performed in parallel.
The tasks Ai (for i=1,…,n) involved in a product planning process identify the matrix shown in Figure
1. The diagonal elements represent self-referencing, which is avoidable so they should be set to zero:
aij=0 (for i=j). The remaining elements can be used to denote various relationships between the tasks.
If Ai provides information to Aj, then aij=1, otherwise aij=0, which signifies that there is no direct
relationship between Ai and Aj. If an element of the matrix holds that aij=1 where i<j, then we speak of
a feed-forward relationship (the element lies above the diagonal), whereas if i>j the entry denotes a
feedback relationship (the element lies below the diagonal). In the case of cycles, the total number of
loops should be determined in order to keep the design process finite.
Furthermore, numerous indicators can be assigned to the elements of the matrix that makes DSM more
applicable to a wider range of problems. Our approach handles the cost and duration constraints
specified by the management of the organization.
For optimizing the development process, a genetic algorithm was chosen. This algorithm makes it
possible to quickly solve robust and extensive problems yielding an optimal solution that fits multiple
criteria.

Figure 1. An example DSM

2.1 Iterations and optimization
Planning is an iterative process and this fact should be taken into account while planning the
development process. We often come across the problem of having to replan certain tasks because of
unclear requirements or at other times, the type of the design itself requires us to redefine the model.
Such cases can be planned in advance and the development process can be tailored accordingly. It is
possible to define repeated task as new versions of the same task. This way the cycles can be
eliminated what is called unfolding the DSM (Figure 2).

Figure 2. The unfolding of an iterative process segment

The unfolded representation shown in Figure 2 is more informative and in fact indispensable for
process planning. Relations do not disappear during optimization, instead the best entry points of

DESIGN PROCESSES 231

cycles should be found in the graph. One basic requirement of development projects is to be able to
work with real information in every work phase. For instance, there can be two different ways for
executing the iteration shown in Figure 3 and its DSM definition: either as a-b-a-b or b-a-b-a, thus
ensuring that the right information is always available at the right time.

a b

a I

b I

a b

Figure 3. Representing an iteration

Figure 4 shows a DSM consisting of three tasks. In the first case, the order of task is a-b-c, where b
and c can be executed in parallel, but they both tie down resources. In order to keep the condition that
all tasks should be done according to the latest relevant information, we must perform nine activities.
In the second case, by rationalizing the order of the task, only seven activities are needed. Doing so,
time and money can be saved.
The aim of this ordering is to find the best entry points of cycles in order to minimize the cost and the
duration of the development.
A DSM prescribed by a planning professional for a given development process is usually far from
optimal: the duration and cost requirements are likely to exceed the optimal level, planning cycle
iterations are unnecessarily complex and pessimistic, making the resource allocation unnecessarily
involved. Therefore, as a first step a genetic algorithm is used in order to compute a DSM that reflects
the optimal activity breakdown, which provides the best duration and cost combination. The inputs of
this optimization are the tasks and their durations and costs. When defining the development order the
goal is to reduce the duration and total cost of the process.
In the method described here, a chromosome (a potential solution instance in the genetic algorithm)
corresponds to a particular task ordering where the genes contain one definite order of the tasks. The
genetic algorithm uses the usual operators: selection (binary contender selection), crossing (partial
crossover), and mutation (per gene). The parameters that drive these operators are discussed in [Rick et
al. 2005].

3. Resource Allocation Problem with Heuristic Simulation Approach
The basis of our approach is simulating the planning process in time. During the virtual planning
process after each elementary allocation time unit some unfinished tasks using various allocation
policies are activated in such a way that all previously discussed conditions still hold. We distinguish
between two families of allocation policies. The first family is called as filtering, the second as ranking
policies.
A filtering policy can activate or suppress a unit of unfinished tasks based on some strategy. A
suppressed element cannot be scheduled at the given time. However, a favored task will get a higher
priority and will be placed higher up in the list of schedulable tasks.
A ranking policy assigns a unique score between 1 to n to the n available tasks. The most important
task will get the highest; the least important will get the lowest score. The available tasks are then
activated based on their priority score. The tasks can be interrupted and there may be a delay in their
execution [Buddhakulsomsiri et al. 2006].
There can be multiple versions of filtering and ranking policies, and they can be applied in
combination in a given simulation context. In case of multiple filtering policies, we obtain the list of
favored and suppressed elements by combining those resulting from applying the individual policies.
If a task appears in both the favored and suppressed lists (because of opposing policies) it will be
remove from the favored ones and will be placed in the suppressed list. Finally, three disjoint sets are
obtained: the favored, the suppressed and the normal tasks. Their semantics are identical to those we
described in the case of filtering policies.

 DESIGN PROCESSES 232

The case of multiple ranking policies is a slightly more difficult situation. One possible method for
using multiple policies could be done by assigning weights to various policies, calculating the scores
of tasks per policy and then summing these values with weights. These cumulative scores could then
be used to rank the available tasks in a decreasing order. The main problem with this approach is that it
can produce interference between to equally weighted policies: a given task may get an average score
despite the fact that it was ranked as best by one policy and as worst by a conflicting other. This is not
necessarily effective since despite being ranked on the top by one policy it is not activated due to
averaging. The authors recommend another approach that uses only one policy at a given time unit. In
this case, a policy would be chosen randomly after every time unit, although we may elect to assign
different probabilities for each policy selection. This approach is free of interference between policies
given that only one is applied at any time unit, and one can control the policy selection process by
setting appropriate probabilities to used policies. However, this procedure, contrary to the previous
approach, is not deterministic.

Figure 4. Representing an iteration in a more complex case

The simulation thus proceeds as follows. First, before each allocation time unit, the set of tasks that
can be scheduled are determined. After this, using the filtering policies, the favored and suppressed
tasks are selected and the ranking policies are applied to those that are not suppressed. Finally at first
the favored than the normal tasks are selected for activation their order is based on the ranking. For
each selected task, an attempt is made to allocate all the resources needed by the task. If there are not
enough sufficient quantities of any resource category, the given tasks cannot be scheduled and will be
skipped. If all resource needs can be fulfilled the available resources will be decreased accordingly and

 a(1) b(1) c(1)

a(1) 1 1

b(1)

c(1) 2

 a(1) b(1) c(1) a(2) b(2) c(2) a(3) b(3) c(3)

a(1) 1 1 1

b(1) 1

c(1) 1 1

a(2) 1 1 1

b(2) 1

c(2) 1 1

a(3) 1 1

b(3)

c(3)

 a(1) c(1) a(2) c(2) a(3) c(3) b(1)

a(1) 1 1 1

c(1) 1 1

a(2) 1 1 1

c(2) 1 1

a(3) 1 1

c(3)

b(1)

Order: a, c, b Order: a, b, c

DESIGN PROCESSES 233

the given task will be activated. Than the algorithm proceeds to assign the remaining resources to the
tasks with lower ranks.
The simulation can terminate in two ways: either all elements are scheduled within the total planning
time or the total planning time is exceeded. In the former case a project plan can be created
automatically, in the latter case the resource allocation problem cannot be satisfied, probably the
conditions should be changed (more resources, longer total planning time, simpler DSM or perhaps
applying different policies); this is always a management decision.

• Number of interruptions filtering policy: This filtering policy favors those tasks that had
been interrupted relatively more often than others. This way the fragmentation of a complex
planning process can be avoided.

• Completeness filtering policy: It favors those tasks that are almost (at least 90%, say)
finished.

• Critical path ranking policy: This algorithm ranks the available tasks based on their
shiftability: the maximum amount of delay that does not extend the length of the critical path
(longest predecessor chain).

• Dominant resource needs ranking policy: Ranks the available tasks based on their resource
needs where the task requiring the most resources is placed to the front.

• Predictive policy: Assigns a probability to each task based on various considerations,
expressing the likelihood that the task can be finished later on (it is able to obtain the resources
needed to complete). If this probability is small, the task should be treated with a higher
priority, as those with more chance for finishing are assumed to have more opportunities later
on.

A multi-variable heuristic model for resource scheduling of constructional design processes have been
worked out in a way that it can schedule the resource environment of development processes
efficiently with the use of the examined policies – policies that filter the number of interruptions,
completeness, as well as dominant resource needs ranking and predictive policy. The efficiency of the
policy depends on the resource environment hence the possible solutions should always be checked
with the combined use of policies [Rick 2007].

4. Case Study
For examination, a classical gear drive development process was chosen. A process consists of 24
tasks with some iterative sub-processes. The adequate DSM is shown in Figure 5. At this state, the
order of the tasks is arbitrary thus it contains spare iterations. With the genetic algorithm-based
optimization the optimal order of tasks can be achieved, the optimized DSM for gear drive
development process can be seen on Figure 6.

Be
ar

in
g

ca
lc

ul
at

io
ns

S
tre

ng
th

 c
al

cu
la

tio
n

w
ith

m

at
er

ia
l p

ro
pe

rti
es

D
ra

fti
ng

 o
f p

ar
ts

R
eq

ui
re

m
en

t
ex

am
in

at
io

n

M
ai

n
de

si
gn

Fi
rs

t m
od

ifi
ca

tio
n

En
d

of
 p

ro
je

ct

S
ca

lin
g

re
vi

ew

St
ar

t o
f p

ro
je

ct

B
ea

rin
g

se
le

ct
io

n

D
riv

en
 s

ha
ft

ch
ec

ki
ng

C
on

tro
llin

g

S
tre

ng
th

 c
al

cu
la

tio
n

sh
af

ts
 ..

.

P
re

co
nc

ep
tio

ns

S
ec

ou
nd

 m
od

ifi
ca

tio
n

D
es

ig
n

of
 g

ea
r p

ar
ts

M
ai

n
de

si
gn

 re
vi

ew

D
is

po
si

tio
n

ve
rs

io
ns

M
ar

ke
t r

es
ea

rc
h

D
oc

um
en

ta
tio

n

Th
ird

 m
od

ifi
ca

tio
n

V
al

id
at

io
n

D
is

po
si

tio
n

sk
et

ch

D
et

ai
le

d
de

si
gn

 o
f g

ea
r

pa
rts

D
ay

s

$ ∑

1 1 14,06 937 6
1 1 14,06 4685 6

1 34,39 6 878 4
1 1,9 950 2

1 1 46,86 14 056 6
1 1 1 3,8 1 900 2

5,695 0 8
1 1 1 1 3,8 1 900 2

1 1 1 1 0 1
1 10,32 1 719 4

1 1 15,65 4173 7
1 1 5,217 5 217 7

1 27,51 6 878 4
1 5 1 000 1

1 1 1 1 4,686 2 342 6
1 27,51 6 878 4

1 1 1 1 2,71 1 355 3
1 1 1 9,5 2 850 2

1 5 1 500 1
1 27,51 3 439 4

1 1 1 4,686 4685 6
1 1 13,55 5 420 3

1 1 7,6 1 900 2
1 1 11,4 3 800 2

Figure 5. The DSM of gear drive development process with thriftless task ordered

 DESIGN PROCESSES 234

The optimized DSM is suitable to be used for automatic project planning fitting the process to a given
human resource environment provided by the heuristic algorithm described before. Figure 7 shows a
conceivable human resource environment for a month period. Each bar represents the cardinality of the
related human resource on the given day.
The human resource environment shown in Figure 7 was elaborated in such a way that it resulted three
days shift with respect to the project start, since we prescribed a FEM (finite element method)
specialist for the first task, but from this human resource category, there is none available in the first
three days. Further artificial resource problem was induced by limiting the amount of some necessary
resources for a few days in the middle of the month. This way the affected task had to be interrupted
and when these resources were once again available the task than could be resumed (Figure 8; Market
research, Bearing selection (1)).

S
ta

rt
of

 p
ro

je
ct

M
ar

ke
t r

es
ea

rc
h

R
eq

ui
re

m
en

t
ex

am
in

at
io

n

P
re

co
nc

ep
tio

ns

D
is

po
si

tio
n

ve
rs

io
ns

D
es

ig
n

of
 g

ea
r p

ar
ts

S
tre

ng
th

 c
al

cu
la

tio
n

sh
af

ts
 ..

.

B
ea

rin
g

se
le

ct
io

n

D
is

po
si

tio
n

sk
et

ch

Fi
rs

t m
od

ifi
ca

tio
n

S
ca

lin
g

re
vi

ew

D
et

ai
le

d
de

si
gn

 o
f g

ea
r

pa
rts

S
tre

ng
th

 c
al

cu
la

tio
n

w
ith

m

at
er

ia
l p

ro
pe

rti
es

B
ea

rin
g

ca
lc

ul
at

io
ns

M
ai

n
de

si
gn

S
ec

ou
nd

 m
od

ifi
ca

tio
n

M
ai

n
de

si
gn

 re
vi

ew

D
riv

en
 s

ha
ft

ch
ec

ki
ng

C
on

tro
llin

g

Th
ird

 m
od

ifi
ca

tio
n

V
al

id
at

io
n

D
ra

fti
ng

 o
f p

ar
ts

D
oc

um
en

ta
tio

n

E
nd

 o
f p

ro
je

ct

D
ay

s

$ ∑

1 1 1 1 0 1
1 5 1 500 1
1 1 500 1
1 5 1 000 1

1 1 1 5 1 500 1
1 15,2 3 800 2
1 15,2 3 800 2
1 5,7 950 2

1 1 7,6 1 900 2
1 1 1 3,8 1 900 2

1 1 1 1 2 1 000 1
1 1 11,4 3 800 2
1 1 5,7 1 900 2
1 1 5,7 380 2
1 1 19 5 700 2

1 1 1 1 1,9 950 2
1 1 1 1 1 500 1

1 1 5,7 1 520 2
1 1 1,9 1 900 2

1 1 1 1,9 1 900 2
1 1 5 2 000 1

1 10 2 000 1
1 8 1 000 1

1 0 1
Figure 6. The DSM of gear drive development process with optimized task order

Resource constraints

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Day

Constraint

Designer Project manager Engineer FEM specialist

Figure 7. The diagram of an imaginary industrial human resource environment used in the case

study

DESIGN PROCESSES 235

Furthermore, it is worth mentioning that our algorithm recognized those tasks that can be scheduled in
parallel (e.g. Design of gear parts (1) and Strength calculation shaft and shaft couplings (1)), given that
the available resources allow for such parallel execution. From the synthesized process plan a Gantt-
diagram is produced: Figure 8.

Figure 8. The final Gantt-diagram for the gear drive development process

Acknowledgement
This research has been supported by the Hungarian Scientific Research Fund grant no. 68773 and the Hungarian
Scholarship Board - German Academic Exchange Service Inter-University Partnerships grant no. 7.

References
Bercsey, T., Groma, I., Rick, T., “Flexible and Effective Task Scheduling and Resource Allocation“ 17.
Symposium „Design for X“, Merkamm, H., (Ed.), Neukirchen, 2006, pp. 95-105.
Buddhakulsomsiri, J., Kim, D., S., “Properties of multi-mode resource-constrained project scheduling problems
with resource vacations and activity splitting”, European Journal of Operational Research, vol. 175(1), 2006,
pp. 279-295
Clement, S., „Erweiterung und Verifikation der Autogenetischen Konstruktionstheorie mit Hilfe einer
evolutionsbasierten und systematisch-opportunistischen Vorgehensweise“, Dissertation, Buchreihe Integrierte
Produktentwicklung, Band 7, Otto-von- Guericke-Universität Magdeburg, 2001
Reinertsen, D., G., „Die neuen Werkzeuge der Produktentwicklung“, Carl Hanser Verlag, München, Wien 1998
Rick, T., „Gépipari terméktervezséi folyamatok erőforrás- és költségszempontú optimálása a termékstruktúra
figyelembe vételével“ Dissertation, Budapest University of Technology and Economics, 2007.
Steward D., V., “The Design Structure System: A Method for Managing the Design of Complex Systems”, IEEE
Transactions on Engineering Management, vol. 28, 1981, pp. 71-74.
VDI-Richtlinie 2221 Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, 1986
(Düsseldorf, VDI-Verlag).

 DESIGN PROCESSES 236

Groma István, Ph.D. student
Department of Machine- and Product Design/Budapest University of Technology and Economics
Műegyetem rkp. 3.
1111, Budapest
Hungary
Tel.: +36 (1) 463-40-81
Fax.: +36 (1) 463-40-81
Email: groma.istvan@gt3.bme.hu
URL: http://gt3.bme.hu/

