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1. Introduction 
The objective of this paper is to re-conceive the nature and development potentials of PDM-systems 
based on a new approach to design theory called “Property-Driven Development/Design” (PDD) 
which has been presented in [WeWe-00, WeWe-01]. 
Property-Driven Development/Design (PDD) is a new modelling approach for products and product 
development processes which is intended to give a theoretical description of design and designing 
which is closer to practice as conventional design theories and methodologies such as [VDI-2221]. 
The distinctive feature of the PDD approach is that it considers functional and other properties on 
equal terms and offers a seamless description of all phases of the development/design process. Due to 
its formal consistency and flexibility it can serve as a theoretical basis for the concept of future PDM 
systems1. 
Today’s PDM-systems suffer from a lack of formalised representation of products: They handle data, 
not knowledge. The information is usually buried within various documents and being processed by 
different software-tools which have no common “language”. This paper proposes a way to improve 
the design process by means of an advanced kind of PDM system based on a comprehensive product 
model. 

2. Property-Driven Development/Design (PDD) 
The concept of PDD is mainly based on the distinction between characteristics (in German: 
“Merkmale”) and properties (“Eigenschaften”) of a product: The characteristics are the product-
defining parameters and their structure (its “Beschaffenheit”), the properties describe the product’s 
behaviour (“Verhalten”). While the characteristics can be directly determined by the designer, the 
properties are a result of the chosen characteristics and can not be directly influenced.  
The characteristics are very similar to what Hubka and Hubka/Eder call “internal properties” [Hubk-
73, Hubk-84, HuEd-92, HuEd-96] and what Suh calls “design parameters” [Suh-90], i.e. parts’ 
structure, geometry, material and surface characteristics of a product. The properties are related to 
Hubka’s and Eder’s “external properties” and to Suh’s “functional requirements”, repectively, e.g. 
weight, safety and reliability, aesthetic properties, but also things like “manufacturability”, 
“assembability”, “testability”, “environmental friendliness” and cost of a product. 
To be able to handle characteristics and properties – literally thousands of them in complex products 
and to keep track of them in the development process they have to be structured. Figure 1 shows on 
the left a fairly obvious proposition for the (hierarchical) structuring of characteristics which follows 
the parts’ tree of a product. (Other methods of structuring characteristics are theoretically possible, but 
                                                      
1  In this article no distinction is made between “PDM” and “EDM” or “EDM/PDM” (Product/Engineering 
Data Management), but the least “bulky” term is preferred. 
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not discussed here.) On the right of figure 1 the most important (“top-level”) classes of properties are 
given as a first entry into their structuring. Of course, these also should be structured more deeply by 
further decomposing them (in any case hierarchically?). It is the authors’ opinion that such a decompo-
sition of properties is always specific to individual industries (product classes), often even specific to 
individual companies within the respective industry. Because the issue of this article is more general 
no attempt is made here to the further structuring of properties. 

Properties:Characteristics:
Assembly

Sub-Assembly #1

Part #1

Part #2
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Geometry & Topology
Nominal
Deviations

Surface Characteristics

Material Char. & Distrib.
Mechanical
Electrical
Optical
...

Position & Orientation

...

Position & Orientation

Identification & Classif.

Position & Orientation

Identification & Classification

Position & Orientation

Identification & Classif.

Geometry & Topology

Surface Characteristics

Analysis (physical or digital): 
Determining/predicting

the product’s properties (behaviour)
from known/given characteristics.

Synthesis, product development: 
Determining/assigning

the product’s characteristics
from given/required properties.

Functions, functional properties

Strength/stability/rigidity prop.

Safety & reliability properties

Ergonomic & aesthetic propert.

Spatial prop., dimens., weight

Manufact./assembly/test. prop.

Transport properties

Maintenance & repair properties

Compliance with regul. & stand.

Environmental properties

Resource consumption

Cost properties

 

Figure 1. Characteristics and properties with the two main relations between the two 

Figure 1 also shows the two main relations between characteristics and properties which correspond 
with the two main activities in the product development/design process: 

• Analysis: Based on known/given characteristics of a product its properties are determined or 
if the product does not yet exist in reality  predicted. Analyses can, in principle, be performed 
via experimentally (e.g. using a prototype) or “virtually” (e.g. using digital simulation tools). 

• Synthesis: Based on given, i.e. required, properties the product’s characteristics are to be 
determined. Synthesis is the main activity in product development: For the customer mainly 
(only?) properties are relevant, thus the development/design process begins with a list of 
required properties. The designer’s task is to find appropriate solution patterns and 
determine/assign their respective characteristics in a such way that the required properties are 
met to the customer’s satisfaction. 

 
In the PDD approach the two main relations between characteristics and properties are modelled in 
more detail, in principle following a network-like structure. Figures 2 and 3 show the two basic 
models for analysis and synthesis, respectively. The expressions used in the figures have the following 
meaning: 
 

Ci: Characteristics (“Merkmale”) Rj: Relations between characteristics and properties 
Pj: Properties (“Eigenschaften”) ECj: External conditions 
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Figure 2. Basic model – analysis Figure 3. Basic model – synthesis 

Once the product is realised (i.e.: the product’s characteristics Ci are physically given), its properties/ 
behaviour (Pj) can be analysed by measuring and testing (albeit this may be quite time- and money-
consuming sometimes, e.g. when testing/checking the product’s durability). In this case the product 
itself is the representation of the relations (Rj). As is well known, measuring/testing properties alone 
does not reveal why the product behaves as it behaves. To answer this question, abstract models, 
methods and tools have to be established which are exactly what the relation-boxes (Rj) in figure 2 
stand for. 
During the product development process, however, when there is not yet a finished product, its 
properties can only be analysed by means of appropriate models, methods and tools which represent 
the relations (Rj) and tell about the influences the relevant characteristics (Ci) have on the respective 
properties (Pj), thus predicting the properties depending on characteristics given at that moment.  
Models, methods and tools to realise the relation-boxes could be physical (e.g. [component] prototypes 
and specified test procedures). But increasingly non-physical models and procedures are applied, in 
many cases mathematical ones. The table shown in figure 4 gives a rough list of different (classes of) 
methods applied for analysing (predicting) a product’s properties during the development process. 

• Guesswork, estimation 
• Experience 
• Customer interrogation 
• Physical tests/experiments 
• Tables, diagrams 

• Calculation/simulation 
– Traditional/simplified 
– Numerical/computer-supported 
– Model-based 
– Rule-based, “fuzzy” 
– Semantic/neural networks 

• ... 
Figure 4. Methods and tools to support (engineering) analysis 

The basic model according to figure 2 needs two additions which are particularly important in the 
context of “real-life” development/design processes and their computer support (figure 5): 

• A product may have more properties than the ones originally considered or even required. In 
PDD they are called “additional properties” (Rj+). They may contribute positively or 
negatively to the considered/required properties or may be not relevant for them. In case that 
they are considered disturbances, their suppression/diminishing becomes a new required 
property. 
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Figure 5. Additional properties and 
internal relations (constraints) between 

characteristics 

• Very often there are fixed 
relations between different 
characteristics of a product, e.g. 
spatial (“element B parallel to 
A”), geometrical (“same diameter 
as ...”), or material. In PDD they 
are called “internal relations 
between characteristics” (IRi). In 
a mathematical sense these are 
constraints which decrease the 
number of free variables on the 
side of the characteristics. As is 
well known, some spatial 
relations as well as geometrical 
relations can be captured and 
administered by today’s 
parametric CAD systems. 

Synthesis (figure 3) is formally “just” the 
inversion of analysis (figure 2): Based on 
given (required), properties (Pj) the 

product’s characteristics (Ci) are to be determined. While in nature the “products” (creatures) 
themselves even during their lifetimes somehow seem to have the ability to modify their 
characteristics (e.g. structure, geometry, material) according to changed requirements (required 
properties), in the technical world we are still very far away from concepts like this. Even new 
approaches such as “adaptronics” stand for much simpler concepts. 
Therefore, the only way to do synthesis in engineering is to use “inverted relation-boxes” (Rj

-1) 
according to figure 3 which stand for appropriate synthesis methods and tools. These are sometimes, 
but by no means always based on models in the scientific sense. The table shown in figure 6 gives a 
rough list of different (classes of) methods that can support synthesis, i.e. which can help to determine 
a product’s characteristics from (required) properties during the development process. 

• Human genius2 
• Association 

– technical patterns 
– patterns in nature (“bionics”) 

• Experience 
• Standard/catalogue solutions 
• Collection of rules 

• Methodical approaches 
• Inverted calculations 
• Computer tools, e.g. 

– Model-based, e.g. structural optimisation, 
genetic algorithms 

– Semantic/neural networks 
• ... 

Figure 6. Methods and tools to support (engineering) synthesis 

In this article it is not possible to comment on all the implications of the new approach to synthesis. 
Considerations on this are to be covered in a book which is in preparation. Only three remarks shall be 
made, as they have a close relation to the issues discussed here: 

• To see synthesis merely as an inversion of analysis is a big over-simplification which has to be 
discussed in more detail. But here only one aspect shall be mentioned: Even the still very 
simple basic model according to figure 3 shows that in synthesis conflicts are inevitable, 

                                                      
2  The same as (quick) association? 
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because different (required) properties 
have influences on identical 
characteristics, and as is well known 
often adverse ones (figure 7). 

• The next remark adresses the external 
conditions (ECj): They have great 
influence both on analysis and on 
synthesis. This was shown to some 
extend in [WeWe-01] in the context of 
DfX (design for X) and shall not be 
repeated here. 

• When again: either in analysis or in 
synthesis computers are used to model 
the relations Rj or Rj

-1, respectively, the 
modelling conditions (MCj) must be 
considered (figure 8). Otherwise it is not 
possible to interpret and evaluate the 
modelling/simulation results correctly. 

Based on the considerations on the new approach 
to modelling products, now the consequences for 
the modelling of product development processes 
are introduced. The product development process 
can be seen as an activity which, in principle 
(“strategically”), follows the synthesis model 
according to figure 3, but has in between 
(“tactically”) many analysis steps according to 
figure 2. During the process in every synthesis 
step ever more characteristics of the product are 
assigned and determined, and in parallel by 
means of the analysis steps ever more and ever more precise knowledge of the product’s 
properties/behaviour is generated. 
The product development process terminates when 

• all characteristics (needed for manufacturing and assembly of the product) are assigned, 
• all (relevant) properties can be determined/predicted 
• with sufficient safety and accuracy, and 
• all determined/predicted properties meet (i.e.: are close enough to) the required properties. 

Figure 9 gives a schematic overview on this interpretation of the product development process. To 
avoid too much complexity, in this figure only one synthesis-analysis-evaluation cycle is shown 
(which, of course, is closely related to the so-called TOTE-scheme described in [Ehrl-95]). Therefore, 
the growing number of characteristics and known properties from one cycle to the next can not be 
demonstrated directly, but should be borne in mind (there is one figure with this focus in [WeWe-01]). 
One last aspect of the PDD-process concept introduced here should be mentioned: The term “early 
phases” has in PDD a quite different meaning than in known design theories and methodologies. Here 
it is not defined with regard to contents of working steps (e.g. in [VDI-2221]: considering functional 
aspects and solution principles = working in an early phase), but by the number of characteristics and 
properties which are already known. Then it is easily understandable (and theoretically explainable) 
that the same properties (function, strength, safety, ergonomics, manufacturing, cost, ...) have to be 
considered several times in the process. The difference is that in “early phases”, where only a couple 
of characteristics are given, very simple methods and tools are required (giving a rough calculation/ 
estimation based on a couple of parameters = characteristics), whereas in “late phases” the focus lies 
on a calculation/simulation as precise as possible (which is based on and also requires a lot of 
parameters!). Accordingly, in the product development process, different methods and tools for the 
analysis of the same properties have to be provided. 
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Figure 7. Conflicts in synthesis (schematic) 

Figure 8. Modelling conditions, important when 
modelling with computers 
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(I) Synthesis step: Assign/determine character. 
from required properties (“Soll-prop.”) 
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(II) Analysis step: Determine/predict properties 
from given characteristics (“Ist-properties”) 
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(III) Evaluate “Ist-properties”  

against “Soll-properties” 

P1

Pn

Rj
-1

ECj

P1-R

Pn-R

C1

Cm

Required
Properties

("Soll-Prop.")

Assigned
Charac-
teristics

Determined
Properties

("Ist-Prop.")

EvaluationMethods/Tools
Analysis

Methods/Tools
Synthesis

∆Pn

∆P1

Rj

I.
I.

II. II. III.

III.

I.
I.

II. II. III.

III.

 

(IV) Draw conclusions from, drive and control 
process based on results of (III) 
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Figure 9. Product development process (schematic) 

3. State of the Art in PDM and CAx 
The environment of today’s PDM systems is characterised by the co-existence of various independent 
tools, each based on its own specific product model. In this environment the PDM system mainly 
focuses on the administration of computer files generated by these tools without having much access 
to the actual contents of the files. The workflow management is limited to “static” processing of 
predefined process patterns. 
The co-existence of the CAx tools’ specific product models brings along a high redundancy in the 
(digital) product documentation. Therefore, a “master system” is needed which contains the currently 
valid model(s) and acts as a source for all tools and systems involved.  
By tradition, this is the role of the CAD system, since geometry makes up for the major part of the 
product-defining characteristics and is needed as a basis for most existing CAx tools. Only recently 
PDM systems have gained a significant function in product development. But since they don’t offer a 
product model themselves, new required functionalities involving non-geometric product 
characteristics and properties have been incorporated into CAD systems, emphasising their role as 
“master system”. But this development has bred new problems: 
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• The concept of CAD systems is clearly oriented to geometry processing, and thus all 
additional product characteristics and properties need to be connected to geometry elements. 
This impedes a continuous support of the development process, since in “early phases” there is 
not much geometry (very early: no geometry at all), only required properties. Furthermore it 
does not seem sensible to structure all product-related knowledge along an assembly 
hierarchy. 

• The “master system” should provide some means for the integration of CAx tools and organise 
the exchange of data between them. Some CAD vendors “solve” this problem by offering a 
whole range of further CAx systems which are adapted to their respective CAD system (and 
vice versa). The CAD customers (and even their component-suppliers) get extremely 
dependent on their respective vendor, as the system does not offer much support for the 
integration of third party tools. Unfortunately, the CAD vendors seem to have grabbed a 
bigger piece of the cake than they can eat, i.e. they don’t have the resources to offer all the 
functionalities all of their customers need. 

So a huge effort is put into the integration of third party software into the existing software 
environment by means of individually developed converters and other auxiliary constructions which in 
turn further increases the dependency, since the investment in these solutions is lost if and when the 
CAD system is changed. 
It is usually the job of the PDM system to hold together all the loose ends, i.e. to integrate all the partly 
overlapping system-specific product models which have no common base (apart from geometry) and 
vary widely in respect to their degree of formalisation.  
The biggest deficit is that today’s PDM systems don’t know anything about characteristics and 
properties of a product, let alone their interrelationships, so they can’t really offer a continuous support 
of the whole product development process as it was discussed in section 2. 

4. Development Potentials for PDM 
In the authors’ opinion, the future “master system” should be an (advanced) PDM system instead of a 
CAD system. It should be based on a comprehensive product model capable to represent all interesting 
characteristics and properties and their interrelationships during the whole life-cycle. The following 
subsections give an overview over the general architecture and advantages of such a system. 

4.1 Contents of an Advanced Product Model 
As the product development process aims at fulfilling required properties by means of solution 
patterns which imply certain characteristics, these are the central elements of an advanced product 
model. The required properties are the very first information appearing in the development of a new 
product, and they play an important role throughout the whole development process since they must be 
permanently evaluated against the predicted/verified properties of the solution (see figure 9). In fact, it 
is the gap between required and predicted properties which drives the development/design process. 
Therefore, three data structures make up the core of a product documentation from the PDD point of 
view (the term “list” is only used for the sake of simplicity and does not imply the form of 
implementation): 

4.1.1 Property List 

This list is actually a hierarchy of property classes and contains all considered properties which are 
mainly required properties. For each property the following should be known: 

• Required value or interval (“Soll-value”, if at all quantifiable) 
• Currently estimated value (“Ist-value”) 
• References to methods/tools to predict/verify the property 
• Accuracy of estimation 
• References to solution patterns and characteristics influencing the property, preferably includ-

ing sensitivity to those characteristics 
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• References to the life-cycle partner systems3 influencing the property 
• Persons/teams responsible for the property4 

4.1.2 Solution Patterns and Characteristics 

The solution patterns could be organised in cards/records of different abstraction levels where a card 
may represent a solution sketch, an organ, an assembly, a part or even a geometrical region (“feature” 
in the traditional sense). Each of these cards should contain the following information: 

• Main characteristics, including geometry (if applicable) 
• Assigned values for characteristics, including “rigidity” (value unknown/preliminary/fixed) 
• References to affected properties (marked as intentional or side-effects) 
• Constraints, i.e. references to connected characteristics 
• References to methods/tools to determine appropriate values for the characteristics based on 

the values of related properties 
• References to alternative solutions/solution patterns 
• Remarks about why this solution pattern has been chosen, including references to constraints/ 

properties which have influenced this decision 
• Persons/teams responsible for the solution patterns/characteristics4 

4.1.3 List of Open Problems 

In order to be able to find solutions which make use of synergy-effects, it seems sensible to keep a list 
of open problems. This list must be based on the results of the evaluation between “Ist“- and “Soll“-
properties (see figure 9 (III/IV)) and shows the area of current work.  
Typically there are three stages of current activities which can be characterised by the number of 
characteristics of the solution patterns which are known: 

• No characteristics known at all: A combination of required properties is given, but no well-
proven solution pattern is known. This corresponds to the conceptual stage in [VDI-2221] and 
only occurs in original design. The first task in the development process is to find or establish 
appropriate solution principles. 

• Several alternative solution principles are known: The alternatives are to be evaluated in order 
to predict if and to which degree they are capable to fulfil the required properties. This usually 
involves considerable elaborating of these alternatives in the first place in order to prepare a 
sufficient base for an exact evaluation. 

• A solution pattern is chosen and partly detailed, but in its current state of elaboration the 
characteristics as well as the properties are not yet completely determined. This corresponds to 
the detailing phase of [VDI-2221].  

The list of open problems contains all properties which are not yet predicted or fulfilled and references 
to the solution patterns influencing these properties. It indicates the current state of elaboration of 
these solution patterns and constraints between them. The list of open problems can be derived from 
the lists of properties and solution patterns if these are kept up-to-date during the whole development/ 
design process, so it is not a constituent part of the product model, but a certain important view on this 
information. 

                                                      
3  E.g. the manufacturing/assembly/testing systems for the life-cycle phase of production, but also things like 
the service/repair infrastructure, even the social environment the product has to be operated in. As was shown in 
[WeWe-01] the external properties (ECj) in the PDD product and process models introduced in section 2 of this 
article can be seen as the properties of the respective life-cycle partner systems. 
4  At present we find almost universally a distribution of responsibilities according to components and parts, i.e. 
according to solution patterns and their characteristics. Why don’t we think at least in some respects about 
distributing responsibilities according to properties? The authors have the impression that a certain part of the 
restructuring in companies (e.g. matrix-organisation, cross-sectional responsibilities) stem exactly from that 
question. 
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4.2 Supporting the Design Process  

4.2.1 Identifying Design Degrees of Freedom 

With the formalised lists explained in section 4.1, possible conflicts or synergy-effects can be 
identified more easily in the early stages. Furthermore, they help to identify the design degrees of 
freedom which can be used to solve a problem. Design degrees of freedom are those characteristics of 
solution patterns or life-cycle partner systems which affect the considered properties and are not yet 
definitively determined, either explicitly or implicitly, by constraints. 

4.2.2 Process Control 

As was described in the sections above from different points of view, the actual driver of the product 
development/design process is the continuous evaluation of properties of the solution and even more 
so the comparison of the results against the required properties (see figure 9). Therefore, the most 
important pre-requisite for enhanced PDM systems is that they are put into a position to keep track of 
the sequence of the synthesis-analysis-evaluation cycles and their results. In an ideal scenario exactly 
this “knowledge” is used by the PDM system to control the process and not as is the case today pre-
defined and in consequence rather inflexible process patterns. 

4.2.3 Enhancing Cooperative Work/Simultaneous Engineering 

An aspect of increasing importance in PDM development is workflow management. While in 
conventional approaches the assignment of persons to certain activities or development states is more 
or less fixed, a system based on an extended product model can associate persons to certain 
characteristics and property classes. This allows for a much more flexible determination of who is 
affected by a certain design decision. 
A further advantage of having one consistent product model covering the whole development process 
is that teams responsible for different life-cycle phases of the product have simultaneous access to the 
current state of the design and therefore can identify conflicts much earlier than in a conventional 
procedure, where a product model is passed on to the “next” team only when a certain state of 
maturity is achieved. 
The development process in big teams is usually an iterative procedure: The developers/designers tend 
to create a solution which is mainly oriented by functional aspects in the first place. Experts for other 
life-cycle phases (which frequently are the developers/designers/providers of the respective life-cycle 
partner systems) evaluate the design from their point of view and ask for changes. The 
developers/designers responsible for the product modify the design and it is re-evaluated. 
Since the time to market is being constantly decreased, there is less time for these iterations. 
Consequently there is a growing pressure on the developers/designers to get everything right in the 
first place. But due to the big number of relevant life-cycle partner systems and corresponding 
properties, acquiring all the necessary expertise would overburden the designers. 
The developers/designers can only be supported if the respective experts can participate in crucial 
decisions from the beginning. This can be achieved by modelling the relationships between 
characteristics and affected properties (e.g. by referring to the persons responsible for crucial 
properties in the property list, see section 4.1.1!). An additional benefit can be achieved by referring to 
the methods/ tools to evaluate the effects of design decisions to certain properties directly from the 
product model. 
The PDM system could also handle parallel design alternatives to offer the experts involved a 
possibility to take part in the selection of an alternative and, in consequence, to avoid the elaboration 
of solutions which are not viable. The number of required iterations should significantly decrease if all 
experts concerned can comment on all design alternatives from the beginning. The ability of the 
chosen product model to represent solutions before the exact geometry is determined, is vital for 
conveying those early alternatives. 
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4.2.4 Integration of CAx tools 

If the “master system” is based on a comprehensive and consistent product model, the roles of other 
CAx (including CAD) systems change significantly. Ideally they would not contain redundant parts of 
the product model, but rather act as “service-providers” which administrate specific parts of the 
product model and determine certain properties (analysis) or characteristics (synthesis). 
So, the CAD system would still handle geometry, but nothing else. It would offer direct access even to 
parts of the geometry by means of standardised procedures which can be addressed and utilised by the 
master system. The master system would only handle “pointers” to the geometry (parts) representing 
certain solution patterns. By means of these pointers it could pick the respective geometry and pass it 
on to another system which might evaluate a certain property. It might as well call procedures to 
extract certain properties (like volume or cross section area) directly from the CAD model. 
The PDD view facilitates continuous computer support in so far as it proposes that there is no 
fundamental difference between “early” and “late” phases. The integration of non-geometric 
characteristics and properties in a product model allows for a representation of 
requirements/specifications from the beginning, i.e. at a time when maybe no characteristics are 
known at all. The successive determination of solution patterns, assignment of their characteristics, 
prediction of properties and comparison with the specifications (required properties) is a continuous 
process which can completely be supported by the computer if an appropriate product model is 
provided. 
Important in the “early phases” are relations (Rj, Rj

-1, see figures 2 and 3) which are based on very few 
characteristics and properties and often can’t be put in equations. Typically this kind of relations is not 
yet put in computer models, but hidden in the minds of experienced designers. Thus it is important to 
find an appropriate representation for rather vague interdependencies which is close to natural 
language but still accessible for algorithms. Semantic nets, which are increasingly discussed in the 
public, could offer such a representation. 

4.2.5 Design Re-Use 

One of the most obvious benefits of an extended product model is the use of formalised solution 
patterns (templates) and past designs which convey design knowledge. This mainly refers to the kind 
of advanced features which have been developed in research [Webe-96, VaWe-99a, VaWe-99b]. 
While a completely explicit product model enables the distributed development and arbitrary 
combination of such features, the formal declaration of their characteristics and properties allows for 
well-structured catalogues and partly automated selection steps of solution patterns for required 
properties. 
A similar field is the formalised representation of life-cycle partner systems which can also be 
supplied by means of electronic catalogues. An important advantage of such a formalised 
representation is that the reasons for certain constraints can be tracked and thus the applicability of 
these constraints can be verified. Furthermore, potential design degrees of freedoms can be identified 
in life-cycle partner systems which is a very important aspect in simultaneous engineering. 

4.3 Implementation Issues 
It is well known that an advanced support of development activities by means of computers is mainly 
a problem of the employed product model. The gap between the possibilities demonstrated in research 
systems and the poor support commercial CAx systems can provide is mainly due to the lack of a 
sensible standardised product model. The immense effort spent on the definition and implementation 
of the STEP standard and the fact that STEP is still mainly used to exchange geometry and aggregtion 
information imply that a conventional approach can not solve the product model issue. 
The key to a new kind of product model covering a wide range of characteristics and properties may 
be object-oriented modelling with soft-coded algorithms. Such a completely explicit product model at 
the same time offers a high flexibility and a high degree of formalisation by including the necessary 
knowledge into the product model instead of into the CAx systems [WeWe-98, WeWe-99,Wern-01]. 
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This concept is essentially based on a modelling language which is able to describe any 
characteristics/properties as well as the corresponding algorithms (relations) and which is interpreted 
by the master system. The role of the other CAx systems in this context is to provide basic data 
structures and functions to manipulate them. Since the master system can delegate the more 
sophisticated tasks to the respective CAx systems, it needs only a very basic functionality itself and 
therefore can be implemented with relatively low effort. 
The product model itself is highly formalised and contained in knowledge modules which represent 
the current design as well as generic solution patterns (templates, “features”), OEM-parts, life-cycle 
partner systems or even tools to evaluate relations (Rj, Rj

-1) which are not covered by standard CAx 
systems. It is very likely that with the establishment of such a master system a new market segment for 
knowledge modules will emerge. Since the knowledge modules can be arbitrarily added to a product 
model without changes in the “master system”, the free market may solve the problem of supplying 
any required functionality which a single CAD supplier can never achieve. 
The knowledge modules define all relevant characteristics and properties of the current design as well 
as the case-specific relations (Rj, Rj

-1). They can also provide knowledge on life-cycle partner systems 
(at least incorporate relevant external conditions ECj which are determined by those partner-systems) 
and modelling conditions (MCj). The master system interprets this language and links formal relations 
(Rj) to the corresponding functionality of different specialised CAx systems.  

Example: A relation defined in the product model might be “part.weight = part.volume × material. 
density”. While the material density is a simple scalar characteristic that may be stored in the master 
system, the exact determination of the part’s volume is a task which should be carried out by a CAD 
system. The master system therefore needs to pass through the request for the part’s volume to the 
respective CAD system. 

Other relations may be formulated more vaguely, sometimes even verbally in text documents. This is 
the classic domain of PDM systems, and the challenge is to incorporate these into a highly formalised 
product model as described above. While a computer won’t be able to understand the content of a text 
document before long, it is possible to link the document to the corresponding characteristics and 
properties. 

5. Summary 
Today, many aspects of the product life-cycle can already supported by different CAx tools. Since 
they often use more or less incompatible data or product models, it is necessary to work with 
converters or to stick to the software (family) of one CAx supplier in order to be able to use product 
data throughout the whole development/design process or even to re-use data/solutions from the past. 
In this article, a new approach of modelling products and, consequently, product development 
processes is introduced (PDD – property-driven development/design), and conclusions are drawn from 
it concerning architecture, functionalities and realisation of advanced PDM systems. The proposed 
advanced PDM system uses a consistent, redundancy-free product model which not only handles the 
characteristics of the solution, but also its properties and the relations between the two categories. 
Thus the PDM system could help to show how a change of the characteristics would affect the 
properties and vice-versa. The system integrates design tools for different phases of product 
development. Collaborative and simultaneous engineering is supported by providing access to the 
current state of development/design for all people involved in the process and by handling different 
design alternatives.  
Finally, some implementation issues are discussed, based on the authors’ experiences from realising 
prototype systems in related fields. 
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