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1. Introduction 
Planetary gear and vibration are primary concerns in their applications in helicopters, automobiles, 
aircraft engines, heavy machinery and marine vehicles. Dynamic analysis’s essential to the noise and 
vibration reduction. This work investigates some critical issues and advances the understanding of 
planetary gear dynamics. 
A lumped-parameter model is built for the dynamic analyses of general planetary gear. The unique 
properties of natural frequency spectra and vibration modes are rigorously characterized. These special 
structures apply for general planetary gears with cyclic symmetry and, in practically important case, 
systems with diametrically opposed planets. 
For different analyses purposes, there are several modelling choices such as a simple dynamic factor 
model, compliance tooth model, torsion model, and geared rotor dynamic model. According to the 
source-path-receiver relationship between the planetary gear, bearing/mouthing, and the cabin 
different boundaries can be selected for building model. This study focuses on the understanding of 
planetary gear dynamic behaviour, so a single stage gearset with discrete elements is the basic model 
for investigation. In previouses lumped-parameter models (Cunliffe et al., (1974); Botman (1976); 
Kahraman, (1994)) the gyroscopic effects caused by carrier rotation have not been considered. 
Because planetary gears have planets mounted on the rotating carrier, the Coriolis and centripetal 
accelerations caused by the carrier rotation introduce gyroscopic terms into the system model. For 
high-speed applications such as aircraft engines (30000 rpm), gyroscopic effects may heavily impact 
the system stability and behavior. In this study is developed a planetary gear model including the 
gyroscopic effects, contact loss nonlinearly, mesh stiffness variation and static transmission error 
excitation. Despite the use of the term planetary gear, this model is applicable for epicyclical gears 
with any configuration (fixed/floating sun, ring, and carrier, and non-equally spaced planets.). 

2. Planetary gear modelling 
Lumped-parameter modelling is used in this paper for dynamic analyses. All gears are considered as 
rigid bodies and component supports are modelled by springs. Linear models with constant stiffness 
were used by Cunliffe(1974) and Botman (1976). Kahraman derived a more general model with non-
linear, time-varying stiffness (1994) for planetary gears with any number and position of planets. He 
subsequently extended it to three-dimensions for helical gear, and reduced it to a purely torsional one. 
The planetary gear model used in our analyses is shown in Figure 1. Each component has three 
degrees of freedom: two translations and one rotation. Kahraman (1994) similarly to that uses the 
model with two distinctions: (1) the planet deflections are described by radial and tangential co-
ordinates and (2) gyroscopic effects induced by carrier rotation are modelled. The radial and tangential 
coordinates more naturally describe the vibration modes. Gyroscopic effects in high-speed 
applications such as aircraft engines may dramatically alter the dynamic behaviour from that at lower 
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speeds. The coordinates illustrated in Figure 1 are used. The carrier, ring and sun translations xh, yh, 
h=c,r,s and planet translations ζn,ηn, n=1,⋅⋅⋅N are measured with respect to a rotating frame of r 
reference i,j,k fixed to the carrier with origin o. The xh, yh, h=c,r,s are directed towards the equilibrium 
position of planet1, and ζn,ηn,are the radial and tangential deflections of the n-th planet. The basis i,j,k 
rotates with the constant carrier angular speed Ωc. The rotational coordinates are uh=rhθh, 
h=c,r,s,1,…N, where θh is the component rotation; rh is the base circle radius for sun, ring and planet, 
and the radius of circle passing through the planet centers for the carrier. Circumferential planet 
locations are specified by the fixed angles ψn, where ψn is measured relative to the rotating basis 
vector i so that ψn = 0. 

 

Figure 1. Planetary gear model 

As an example, derivation of the sun equations of motion is presented. Figure 2 shows a sun-planet 
mesh with masses ms, mp and moments of inertia Is, Ip. αs is the pressure angle of the sun planet mesh. 
Static transmission error of the n-th sun-planet mesh esn(t) is included as dynamic excitation at the 
mesh spring. 

.. .. . .. .
2 22 2s s c s c s s c s c sr x y x i y x y j   = − Ω − Ω + + Ω − Ω   

   
  (1) 

The sun position and acceleration are rs=xsi + ysj and 

 

Figure 2. A sun-planet mesh 

The equations of motion for the sun are 
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Where the summation index n ranges from 1 to N throughout this study unless otherwise indicated. δsn 
defined in (6), denotes the compression of the n-th sun-planet mesh spring. ψsn=ψn-αs⋅Ts is the torque 
applied to sun.  
The equations of motion for the ring, carrier and n-th planets are obtained similary. 
 

where Tr, Tc are the external torque’s applied to the ring and carrier. The δ are compressions of the 
elastic elements and defined as: 
Sun-planet mesh: δsn = yscosψsn – xssinψsn - ζnsinαs - ηncosαs + us + un + esn                   (6) 
Ring-planet mesh: δrn = yrcosψrn - xrsinψrn - ζnsinαr + ηncosαr + ur – un + ern                   (7) 
 planet bearing radial:  δnr = ycsinψn + xccosψn - ζn                                                                    (8) 
planet bearing tangent. δnt = yccosψn - xcsinψn - ηn + uc                                                                    (9) 
where ψrn = ψn + αr and αr is the pressure angle of the ring-planet mesh.  
Equation (6) is derived from synthesis of the sun and planet deflections in the direction of the line of 
action for sun-planet meshes (Figure 3.a). Similarly, (7)-(9) are obtained by kinematics analyses of 
ring-planet meshes (Figure 3.b) and the planet bearing interfaces with the carrier (Figure 3.c) 
Assembling the system equations in matrix form yields 

M is the inertia matrix and Kb is the bearing stiffness matrix. G and KΩ result from high-speed carrier 
rotation and have not been included in published models. To model the time-varying stiffness 
associated with changing numbers of teeth in contact at each mesh, Km can be decomposed into mean 
and time-varying components. Tooth separation nonlinearly is implicated included in Km(t). t(t) are the 
applied external torque and F(t) represents the static transmission error excitation. 
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Figure 3. Kinematics sketches to derive relative component deflections 

As an example the planetary gear in this paper is the system with four planets and 18 degrees of 
freedom. Model parameters of the planetary gear are given in Table1. 

Table1. Model parameters of the planetary gear 
 Sun Ring Carrier Planet 

Mass (kg) 0.4 2.35 5.43 0.66 
I/r2 (kg) 0.39 3.00 6.29 0.61 
Base diameter(mm) 77.42 275.03 177.8 100.35 
Teeth number 27 99  35 
Mesh stiffness (N/m)  ksp=krp=km= 5x108  
Bearing stiffness (N/m)  kp=ks=kr=kc= 108  
Torsion stiffness (N/m)  kru=109 Ksu=kcu=0  
Pressure angle (o)  αs=αr=α= 24.6  

 
The free vibration analysis calculates critical parameters such as natural frequencies and vibration 
modes that are essential for almost all-dynamic investigations. All the vibration modes are classified 
into rotational, translational and planet modes with distinctive properties. These well-defined 
properties are not valid when planets are arbitrarily spaced, but still apply to practically important case 
of diametrically opposed planets. The free vibration properties are very useful for future analyses of 
planetary gear dynamics, including eigensensitivity to design parameters, natural frequency veering, 
planet mesh phasing and parametric instabilities from mesh stiffness variations. 
The natural frequency (example of four planet) for model parameter given in Table 1 is: 

Table 2. Natural frequency for four planets 
 Translation Rotation Planet Translation Rotation Planet 

Natural frequency (Hz) 769 1156 1609 1710 1781 2175 
 
 
Figure 4 shows the spectrum of the steady state planet radial deflection for range of operating speeds. 
At all speeds, the response has frequency content only at mesh frequency and harmonics, although this 
is not imposed in the Finite element model. The sun rotational response has no spectral content in the 
odd harmonics of mesh frequency, and translational mode resonance’s are absent in the remaining 
even harmonics. 
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Figure 4. Easy state planet radial displacement spectrum for a range of operating speeds  

The solutions are obtained from Numerical integration using mesh stiffness in rectangular waveforms 
is shows in Figure 5. The resonance excited by the primary instability 2ω5 is extremely large because 
tooth separation (that is, vanishing mesh stiffness) is not considered; the mesh stiffness are pre-
specified functions of time (Fig.5). In practice, tooth separation (clearance nonlinearly) occurs for 
large dynamic responses and its effects are dramatic. Sun-planet tooth separation ksp=0 is apparent in 
Figure 6. For mesh frequency in the primary instability region of 2ω5. 

 

Figure 5. The sun-planet mesh stiffness is pre-specified 

 

Figure 6. Sun-planet tooth separation (ksp=0) occurs for Ω=4.5 kHz=2ω5  

Figure 7 shows a time signal of acceleration between sun and planet of planetary gear. Those results 
were simulated with MatLab ver 6 and theoretically expected. 
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Figure 7. Sun-planet  time signal of acceleration for N=1000 sample (125ms). 

3. Conclusion 
The scope of this study is to advance the modelling and understanding of planetary gear dynamics and 
analytically examine certain critical factors affecting planetary gear noise and vibration. This research 
focuses of the following specific task. 

• Derive a lumped-parameter model for spur planetary gears, including different planet phasing, 
gyroscopic effects; mesh stiffness variation and transmission error excitation.  

• Investigate the parametric instabilities caused by multiple time-varying mesh stiffness. Two-
stage gear systems are examined first to clarify pervious conflicts and derive simple 
expressions of instability boundaries. The well-defined modal properties are used to identify 
the effects of contact ratios and mesh phasing on planetary gear parametric instability. 
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