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1 INTRODUCTION 
The design structure matrix or dependency structure matrix (DSM) provides an effective tool for the 
representation and analysis of complex system models. In a majority of application areas these 
matrices are almost invariably sparse in that a large proportion of the entries are identically zero. 
Algorithms for sparse matrices arising in large-scale problems must exploit the sparsity structure for 
computational efficiency. Combinatorial structures play an important role in the design of sparse 
matrix algorithms (Gilbert et. al., 2008). In this paper we borrow novel ideas from combinatorial 
scientific computing literature and illustrate how they can be applied in DSM computations to build 
new and efficient software tools for analysing the DSM. Some of the existing publicly available DSM 
research software use MATLAB – an integrated development environment for technical computing. 
McGill (2005) and Thebeau (2001) discuss MATLAB implementation of DSM partitioning and 
clustering where matrices are stored as dense matrices. It is to be noted that MATLAB, however, does 
implement sparse matrix operations using a column-oriented sparse storage of the matrix. Our 
objective here is to use a general-purpose high-level programming language (e.g., C++) for the 
implementation of computationally intensive DSM algorithms for large-scale problems, thus ensuring 
maximum portability and extensibility.           
 
Many problems in numerical and combinatorial computing can be modelled by sparse matrices as well 
as graphs as both of these tools depict dependency relationship among the system elements (Hossain 
and Steihaug, 2006, 2010; Hossain, 2009). The increasing complexity of product architectures and the 
large-scale nature of the design processes for new products pose considerable challenges in the 
planning and realization of their development (Sharman and Yassine, 2004). Some of these challenges 
are addressed by choosing a suitable representation (or abstraction) of the problem so that novel 
algorithmic techniques that are successfully applied in solving similar problems in other scientific 
areas can be used on the problems under discussion. Braha and Bar-Yam (2004, 2007) study statistical 
properties of directed graphs or networks representing large-scale, complex distributed product 
development. The duality between sparse matrices and graphs can be exploited in the design and 
analysis of algorithmic tasks for the underlying computational problems – e.g. in the analysis of 
complex networks. In this note, the main focus is to identify and explore algorithmic techniques and 
data structures for efficient representation and computations as required in major DSM applications 
(Braha and Bar-Yam, 2004, 2007; Browning, 2001; Jebala and Eppinger, 1991; Kusiak and Wang, 
1993). We propose Compressed Sparse Row (CSR) as a unifying data layout scheme for both the DSM 
and its underlying graph, and present precise computational complexity estimates for the DSM 
partitioning algorithms. Specifically, we view the DSM computation as two related but separate 
problems: one that is concerned with the visualization of the pattern of dependencies among the 
process elements and one that is concerned with the computational tasks of analyzing these 
relationships. This viewpoint is necessary as for large-scale problems (MacCormack et. al., 2006; 
Braha and Bar-Yam, 2004, 2007) even storing the DSM as a dense matrix may not be feasible.  
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The two main categories of DSM identified in Browning (2001) are the static DSM where the 
interacting system elements represent organizational entities or product components and the task-
based DSM where the system elements are constrained by precedence relationship. In either case the 
main computational task can be viewed as a rearrangement of rows and columns of the matrix that 
optimizes certain objective function. Let A � �n� n  be a DSM where the entry in row i and column j, 
written a(i,j) or aij, denotes the strength of the interaction between the system elements i and j with 
a(i,j) = 0 implying no interaction. Without loss of generality, we assume only nonnegative 
interactions. Let ei  = (0 0 � 0 1 0 � 0)T be a vector in {0,1}n where the ith entry of the vector, ei(i), is 
1 and all other entries are 0. Then P � {0, 1}n � n is called a permutation matrix if its jth column P(:,j) 
= ek for some k � {1,2, � , n} and P(:,j) � P(:l), j � l.  

2 SPARSE DATA STRUCTURES AND GRAPHS 
The CSR scheme is one of the common data structures for representing matrices whose sparsity 
patterns have no known regular structure. This storage scheme can be implemented using three arrays: 
value to store the nonzero entries row-by-row, colind that stores the column indices of the 
nonzero entries in value, and rowptr that contains the (array) index of the first nonzero element of 
each row of the sparse matrix in colind and value arrays. In the CSR storage scheme the sparse 
matrix is compressed by moving the nonzero entries in each row to the left as shown in Figure 1.  

 
The data structures to store the example matrix under the CSR scheme are shown in Figure 2. 

 
Array value stores the nonzero entries in each row contiguously; array colind stores the column 
indices of the nonzero entries of value; array rowptr indexes into colind array and stores the 
index location of the first nonzero entry in each row of the matrix. The nonzero entries in row i can 
then be accessed as value(rowptr(i)) � value(rowptr(i+1)-1). Note that the CSR 
scheme stores only the nonzero entries of the matrix. Let nnz(A) denote the number of nonzero entries 
in matrix A. The storage requirement in the CSR scheme for A � � n � n  is therefore 2 � nnz(A) + n + 1 
units of computer memory with row-wise access to the nonzero entries of the matrix. A companion 
data structure, the Compressed Sparse Column (CSC), can be defined to provide column-wise access 
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to the matrix nonzero entries using arrays rowind that stores the row indices of the nonzero entries in 
value and colptr that indexes into rowind and stores the index location of the first nonzero 
entry in each column of the matrix. The access to the nonzero entries in column j is provided as 
value(colptr(j)) � value(colptr(j+1)-1). With both column- and row-wise 
accesses the storage requirement for a sparse matrix using the compressed row/column scheme is 
therefore 3 � nnz(A) + 2 � n + 2 units of computer memory, which is consistent with the design 
principle for sparse linear algebra (Gilbert et. al., 2008). Associated with matrix A is a directed graph 
G = (V, E) where V is the set of n vertices and there is a directed edge from vertex vi to vertex vj, 
denoted (vi,vj) � E whenever aij � 0, i � j . Then  nnz(A) = |E|. The first DSM computational problem, 
known in the literature as partitioning, is to sequence the tasks in a task-based DSM so as to minimize 
the feedback marks. As a sparse matrix problem the partitioning problem can be stated as, 

find a permutation matrix P  such that PTAP is block lower triangular. 

 
 
Figure 3 shows a sparse matrix symmetrically permuted to block lower triangular form in which the 
diagonal blocks are square submatrices. Without loss of generality we assume that the diagonal entries 
of the DSM are nonzero (see e.g. MacCormack, 2006). Clearly, if the diagonal blocks are scalar 
quantities ( 1 � 1 matrix), then A can be permuted into a lower triangular form i.e., PTAP is lower 
triangular and there are no feedback marks - the ideal arrangement of the tasks in a project. It is 
therefore of interest to know whether the bltf of a DSM is unique and if the diagonal blocks themselves 
can be permuted to a bltf. Answers to the above questions as well as other DSM-related questions are 
most conveniently provided using graph theory. 
A directed path from vertex vi to vertex vj, written, vi � vj is a sequence of vertices (vi � vi1 , vi2,, �, vil 

� vj) such that (vik , vik+1) � E, k = 1 � l - 1  and that the vertices in the path are all distinct. A directed 
path vi � vj is called a directed cycle whenever vi = vj. A graph H = (V’, E’) is a subgraph of graph G 
= (V, E) if V’ � V, E’ � E  and (u, v) � E’ implies u, v � V’. A subgraph H is said to be strongly 
connected if for each pair of vertices u, v � V’, u � v, v � u. A subgraph H is said to be a strongly 
connected component (scc) if H is strongly connected and no other strongly connected subgraph of 
graph G properly contains H. Since each vertex can belong to exactly one strongly connected 
component, strongly connected components of a graph partitions the vertices of the graph and the 
partition is unique. With the concept of matrix reducibility, the DSM partitioning problem can now be 
viewed as a graph problem. Matrix A is said to be reducible if there is a permutation P for which the 
bltf, as in Figure 3, has at least two diagonal blocks. A matrix is irreducible if it is not reducible. The 
following result (see Brualdi and Herbert, 1991) characterizes the DSM partitioning as a graph 
problem.  
Theorem 1. Matrix A � � n � n with nonzero diagonal entries is irreducible if and only if G(A) is 
strongly connected. 
From Theorem 1 we can deduce that each diagonal block Aii represents a strongly connected 
component of G(A) and therefore cannot itself be permuted into a block triangular form. Several 
algorithms exist for finding the bltf for sparse matrices with varying asymptotic computational 
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complexity. One method, due originally to Harary (see Duff and Reid, 1978), involves computing the 
power of the 0-1 matrix (a matrix where the nonzero entries are replaced with a 1) associated with 
matrix A requiring O(n3) computational effort (Gebala and Eppinger, 1991). A O(n2) algorithm, due to 
Sargent and Westerberg (1964), finds sccs utilizing the fact that the vertices in a cycle must belong to 
the same strongly connected component. The first asymptotically optimal algorithm requiring only 
O(|V| + |E|) computational effort for partitioning a directed graph into its strongly connected 
components is due to Tarjan (1972). Duff and Reid (Duff and Reid, 1978) discuss an implementation 
of Tarjan’s algorithm. Central to this elegant algorithm is to use a vertex stack to identify and 
incrementally build strongly connected components during a depth-first search (dfs) of the graph. As 
each vertex is visited (via an edge) for the first time by the dfs algorithm it is pushed onto the stack. 
Using an auxiliary array of size n = |V| the so called root of each strongly connected component is 
computed. Whenever a root vertex is discovered during the return from a recursive call to the dfs, all 
the vertices in the same connected component (including the root vertex) are found in the stack. These 
vertices, together with the root vertex, are popped from the stack and are assigned a component 
number. In our example matrix, the vertices labelled 1 and 4 are the root vertices corresponding to the 
two strongly connected components as depicted in Figure 4. The order in which the depth-first 
traversal visits the vertices defines the permutation matrix which can be efficiently represented by a  
permutation vector. For our example matrix A the graph G(A) consists of two strongly connected 
components: the  first consisting of vertices {v6, v2, v4} with  v4 as the root and the second consisting of 
vertices {v5, v3, v1} with v1 as the root. The corresponding permutation matrix P defined by P(:,1) = e6, 
P(:,2) = e2, P(:,3) = e4, P(:,4) = e5, P(:5) = e3, P(:,6) =e1 can be represented by the vector (6 2 4 5 3 
1).   
 

 
Figure 4. The directed graph associated with the matrix of Figure 1  
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In Figure 5 the original matrix on the left is symmetrically permuted into a block lower triangular 
form. The top-left diagonal block represents the first strongly connected component and the bottom-
right diagonal block represents the second strongly connected component. It is also easy to see that the 
algorithm sketched above can be used to perform related computation – e.g., tearing (Kusiak and 
Wang, 1993; Gebala and Eppinger, 1991) – without a second pass over the graph vertices.  With 
respect to the implementation of Tarjan’s algorithm for DSM partitioning we first note that since G(A) 
is a directed graph, for each vertex vi we need access to edges of the form (vi,vj), aij � 0 (also known as 
outgoing edges) only; therefore, the CSR representation of the sparse matrix suffices. Secondly, the 
main computational step in the algorithm is to access the outgoing edges at each vertex. This is 
efficiently done by j = colind(k), k = rowptr(i) � rowptr(i+1) – 1  to access 
the vertices adjacent to vertex vi via the outgoing edges. Therefore, the CSR storage scheme provides 
an efficient implementation of Tarjan’s algorithm.  

3 CONCLUDING REMARKS 
In this paper we have proposed a sparse data structure for efficiently computing with DSM matrices 
and have provided a precise characterization of the computational complexity of the DSM partitioning. 
Although our discussion is centred around partitioning, our proposal extends to other computations 
such as tearing and clustering (MacCormack et al., 2006). We have also sketched Tarjan’s 
asymptotically optimal partitioning algorithm. For sparse rectangular matrices, a more general 
partitioning procedure based on bipartite graph matching that utilizes strong Hall property can be 
found in Pothen and Fan (1990). The research presented in this paper is a preliminary report on the 
design of a software toolkit for DSM partitioning and tearing.  
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The DSMThe DSM

The DSM depicts pair-wise dependency between system 
l telements
– Only a small fraction of the possible dependencies are actually 

presentpresent 
– The dimension of the matrix is large (102  ~ 106 or more)
– Important DSM computations have combinatorial components

• Partitioning: Rearrange the columns and rows to reduce the feed-
back marks. 

• Tearing: Remove a subset of marks that optimizes certain g p
objective function 

12th International DSM Conference 2010- 3
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Large-scale Problems (1)Large scale Problems (1)
A. MacCormack, J. Rusnak and C. Y. Baldwin, Exploring the Structure of Complex 

Software Designs: An Empirical Study of Open Source and Proprietary Code, g p y p p y
Management Science, 52(7):1015-1030, 2006.

Mozilla Linux
Number of source files 1684 1778
Function/source file 17.7 12.8
Memory to store full 
matrix (4 bytes/element)

13.5 GB 7 GB

12th International DSM Conference 2010- 4
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Large-scale Problems (2)Large scale Problems (2)
The Statistical Mechanics of Complex Product Development: Empirical and Analytical 

Results.Management Science. Vol. 53 (7). pp. 1127-1145. July 2007.g ( ) pp y

Problem Dimension Number of 
nonzeros

Density (%)

Vehicle 120 417 2.89
Operating 
Software

466 1245 3 X 10-2

Software
Pharma. Facility 582 4123 3.4 X 10-3

Hospital Facility 889 8178 1.3 X 10-3p y

12th International DSM Conference 2010- 5
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Sparse Matrix Representation and ComputationSparse Matrix Representation and Computation
• Computer representation of a sparse matrix should be proportional to 

max(n nnz) computer wordsmax(n, nnz) computer words
– Coordinate storage: three arrays I (row index), J (column index), v (value) of 

size nnz, each; 
– Compressed row (column) storage: three arrays rowptr of size n+1 colind– Compressed row (column) storage: three arrays rowptr of size n+1, colind

of size nnz, and value of size nnz
– Compressed diagonal storage
– …

• Running time of a  basic sparse matrix operation (e.g., sparse matrix 
multiplied by a dense vector) should be proportional to the size of the 
data accessed and the number of nonzero floating point operationsdata accessed and the number of nonzero floating point operations.

12th International DSM Conference 2010- 6
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Compressed Sparse Row (CRS) RepresentationCompressed Sparse Row (CRS) Representation
• Storage 

requirement in 
CRS scheme:

nnz + nnz + n +1

= 2 nnz + n + 1= 2 nnz + n + 1 

• Column 
indices of the 
nonzeros in 
row i:row i:

colind(l)..colin
d(h)

l = rowptr(i)

h = rowptr(i+1) 
-1

12th International DSM Conference 2010- 7
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A DSM and its GraphA DSM and its Graph
• For a sparse matrix A define a 

directed graph G(A) = (V E)directed graph G(A)  (V, E)
where

– There are n vertices: 
V = {v1 v2 v }V  {v1, v2, …, vn} 

– for aij  � 0, i � j there is a 
directed edge from vi to vj, 
denoted (v v ) in Edenoted (vi, vj) in E

• |V| = n, |E| = nnz

12th International DSM Conference 2010- 8
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DSM PartitioningDSM Partitioning
Matrix Partitioning Problem 

Given a task based DSM A find a permutation matrix P such that the numberGiven a task-based DSM A find a permutation matrix P such that the number 
of feed-back marks in PTAP is minimized (over all such permutation of the 
rows and columns of A).

Observations:Observations:
• A permutation matrix is a (column/row) permuted identity matrix. 

• If PTAP is lower triangular then the permutation P results in optimum 
arrangement of the tasks.

– Not all DSM can be permuted to lower triangular form. 

“Find a Permutation Matrix P Such that PTAP is Block Lower 
Triangular”Triangular

12th International DSM Conference 2010- 9
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Block Lower Triangular Form (bltf)Block Lower Triangular Form (bltf)

• The diagonal blocks are square 
• k = n implies PTAP is lowerk  n implies P AP is lower 

triangular
• k = 1 implies  PTAP yields no 

improvement w.r.t. feedback p
marks

Matrix A is reducible if  �P such that 
PTAP has at least two blocks i.e., 
(k 2)(k 	2)

K = 1 implies irreducible

• Can the diagonal blocks 
themselves be permuted into bltf 
?
I bltf d iti i ?• Is bltf decomposition unique?

12th International DSM Conference 2010- 10
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The Graph ProblemThe Graph Problem

A directed path from vertex vi to vertex vj, written, vi� vj is a sequence of 
vertices (vi � vi1 , vi2 ,�, vil � vj) such that (vik , vik+1) � E, k = 1� l- 1 andvertices (vi � vi1 , vi2,, , vil � vj) such that (vik , vik+1) � E, k  1 l 1  and 
that the vertices in the path are all distinct. 

A path is a cycle if the start and the end vertices are the same.
A graph H = (V’ E’) is a subgraph of graph G = (V E) if V’ � V E’ � E andA graph H = (V , E ) is a subgraph of graph G = (V, E) if V � V, E  � E and 

(u, v) � E’ implies u, v � V’.
A subgraph H is said to be strongly connected if for each pair of vertices u, v 

V’ u v v u� V’, u � v, v � u . 
A subgraph H is said to be a strongly connected component (scc) if H is 

strongly connected and no other strongly connected subgraph of graph G
l t i Hproperly contains H. 

Theorem (Brualdi and Herbert, 1991). 
Matrix A � � n � n with nonzero diagonal entries is irreducible if and only if 

G(A) is strongly connected.

12th International DSM Conference 2010- 11
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Algorithms and ComplexityAlgorithms and Complexity
• Diagonal blocks cannot themselves be permuted into bltf.
• Strongly connected component i corresponds to the diagonal block Aii;g y p p g ii;
Matrix-based Algorithms:

– O(n3) algorithm due to Harary (Harary F., J. Math. Phys. 38, 1959) consists of 
repeatedly multiplying the binary matrix A with itself.

G h b d Al ithGraph-based Algorithms:
– O(n2) algorithm due to Sargent and Westerberg (Sargent R.W.H. and 

Westerberg A.W., Trans. Ins. Chem. Engrs. 42, 1964) 
Optimal Algorithms:Optimal Algorithms:

– The first O(n+nnz) algorithm due to Tarjan (R. E. Tarjan, SIAM J. Comput. 
1(2), 1972) relies on depth-first search (dfs) technique to find strongly 
connected component.

– The Kosaraju-Sharir (M. Sharir, Computer and Mathematics with Appl., 7(1), 
1981) algorithm performs two dfs of the graph; the second dfs is performed on 
the modified graph.

– The Cheriyan, Melhorn, Gabow algorithm (J. Cheriyan and K. Melhorn,The Cheriyan, Melhorn, Gabow algorithm (J. Cheriyan and K. Melhorn, 
Algorithmica 15, 1996; H.N. Gabow, Inf. Proc. Let. 74(3-4), 2000) maintains all 
the sccs during dfs

12th International DSM Conference 2010- 12
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Tarjan’s Algorithm for finding Strongly Connected 
Components 

Alg. SCC_Tarjan
In: Directed graph G = (V,E)

Alg. Dfs (v)
Method:

Out: list cmpt[1 .. n]
Method:

initialize array root of size n;
i iti li df f i

root[v] 
 v; push v onto st;
for each edge (v,w) in E do

if w is not processed then
dfsn[w] 
 dfsNum; 

initialize array dfsn of size n;
create an empty stack st of size n;;
initialize list cmpt;
compNum 
 1;

[ ] ;
dfsNum 
 dfsNum + 1;Dfs(w);

endif
if w is not assigned to a SCC then
if dfsn[w] < dfsn[v] thencompNum 
 1;

dfsNum 
 1;
for each vertex v in V do

if v is not processed then

if dfsn[w] < dfsn[v] then
root[v] 
 w;

endif
endif

dfsn[v] 
 dfsNum;
dfsNum 
 dfsNum + 1;
Dfs(v);
dif

endfor
if root[v] is v then 

pop vertices z from st until vertex v is popped, for 
each such z, cmpt[z] 
 compNum;

endif
endfor

endSCCTarjan

compNum 
 compNum + 1;
endif

endDfs

12th International DSM Conference 2010- 13
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IllustrationIllustration 
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Notes on ImplementationNotes on Implementation 
• For each vertex v only the outgoing edges (v,w) are needed to access v’s 

neighboring vertices wneighboring vertices w
– colind(rowptr(v)) .. colind(rowptr(v+1) - 1)

• Each edge (nonzero) is accessed only once
Depth of rec rsion can at most be n• Depth of recursion can at most be n

• The root finding stack st may never contain more than n elements.
• The number of auxiliary arrays can be reduced and can be lumped 

together into one large array for better data locality

12th International DSM Conference 2010- 15
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Summary and Future ResearchSummary and Future Research
Summary

• DSM partitioning is equivalent to finding strongly connected components of anDSM partitioning is equivalent to finding strongly connected components of an 
associated graph

– Tarjan’s SCC algorithm is asymptotically optimal!
• The CRS scheme provides an efficient implementation for DSM partitioning

– A graph data structure is not constructed explicitly! same representation suffice for the 
sparse DSM and its graph.

– The associated graph being a directed graph allows us to use only row-oriented data 
accessaccess.

Future Research
• Numerical testing for large-scale DSM
• Precise computational complexity of other DSM computations• Precise computational complexity of other DSM computations
• New heuristics for computationally intractable DSM computation that exploit 

“special local structures”
• Software tool developmentSoftware tool development 
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