
12TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’10
22 – 23 JULY 2010, CAMBRIDGE, UK

EFFICIENTLY COMPUTING WITH DESIGN
STRUCTURE MATRICES
Shahadat Hossain
Department of Mathematics and Computer Science, University of Lethbridge, Canada

Keywords: sparse data structure, block triangular form, strongly connected component, depth-first
search

1 INTRODUCTION
The design structure matrix or dependency structure matrix (DSM) provides an effective tool for the
representation and analysis of complex system models. In a majority of application areas these
matrices are almost invariably sparse in that a large proportion of the entries are identically zero.
Algorithms for sparse matrices arising in large-scale problems must exploit the sparsity structure for
computational efficiency. Combinatorial structures play an important role in the design of sparse
matrix algorithms (Gilbert et. al., 2008). In this paper we borrow novel ideas from combinatorial
scientific computing literature and illustrate how they can be applied in DSM computations to build
new and efficient software tools for analysing the DSM. Some of the existing publicly available DSM
research software use MATLAB – an integrated development environment for technical computing.
McGill (2005) and Thebeau (2001) discuss MATLAB implementation of DSM partitioning and
clustering where matrices are stored as dense matrices. It is to be noted that MATLAB, however, does
implement sparse matrix operations using a column-oriented sparse storage of the matrix. Our
objective here is to use a general-purpose high-level programming language (e.g., C++) for the
implementation of computationally intensive DSM algorithms for large-scale problems, thus ensuring
maximum portability and extensibility.

Many problems in numerical and combinatorial computing can be modelled by sparse matrices as well
as graphs as both of these tools depict dependency relationship among the system elements (Hossain
and Steihaug, 2006, 2010; Hossain, 2009). The increasing complexity of product architectures and the
large-scale nature of the design processes for new products pose considerable challenges in the
planning and realization of their development (Sharman and Yassine, 2004). Some of these challenges
are addressed by choosing a suitable representation (or abstraction) of the problem so that novel
algorithmic techniques that are successfully applied in solving similar problems in other scientific
areas can be used on the problems under discussion. Braha and Bar-Yam (2004, 2007) study statistical
properties of directed graphs or networks representing large-scale, complex distributed product
development. The duality between sparse matrices and graphs can be exploited in the design and
analysis of algorithmic tasks for the underlying computational problems – e.g. in the analysis of
complex networks. In this note, the main focus is to identify and explore algorithmic techniques and
data structures for efficient representation and computations as required in major DSM applications
(Braha and Bar-Yam, 2004, 2007; Browning, 2001; Jebala and Eppinger, 1991; Kusiak and Wang,
1993). We propose Compressed Sparse Row (CSR) as a unifying data layout scheme for both the DSM
and its underlying graph, and present precise computational complexity estimates for the DSM
partitioning algorithms. Specifically, we view the DSM computation as two related but separate
problems: one that is concerned with the visualization of the pattern of dependencies among the
process elements and one that is concerned with the computational tasks of analyzing these
relationships. This viewpoint is necessary as for large-scale problems (MacCormack et. al., 2006;
Braha and Bar-Yam, 2004, 2007) even storing the DSM as a dense matrix may not be feasible.

345

The two main categories of DSM identified in Browning (2001) are the static DSM where the
interacting system elements represent organizational entities or product components and the task-
based DSM where the system elements are constrained by precedence relationship. In either case the
main computational task can be viewed as a rearrangement of rows and columns of the matrix that
optimizes certain objective function. Let A � �n� n be a DSM where the entry in row i and column j,
written a(i,j) or aij, denotes the strength of the interaction between the system elements i and j with
a(i,j) = 0 implying no interaction. Without loss of generality, we assume only nonnegative
interactions. Let ei = (0 0 � 0 1 0 � 0)T be a vector in {0,1}n where the ith entry of the vector, ei(i), is
1 and all other entries are 0. Then P � {0, 1}n � n is called a permutation matrix if its jth column P(:,j)
= ek for some k � {1,2, � , n} and P(:,j) � P(:l), j � l.

2 SPARSE DATA STRUCTURES AND GRAPHS
The CSR scheme is one of the common data structures for representing matrices whose sparsity
patterns have no known regular structure. This storage scheme can be implemented using three arrays:
value to store the nonzero entries row-by-row, colind that stores the column indices of the
nonzero entries in value, and rowptr that contains the (array) index of the first nonzero element of
each row of the sparse matrix in colind and value arrays. In the CSR storage scheme the sparse
matrix is compressed by moving the nonzero entries in each row to the left as shown in Figure 1.

The data structures to store the example matrix under the CSR scheme are shown in Figure 2.

Array value stores the nonzero entries in each row contiguously; array colind stores the column
indices of the nonzero entries of value; array rowptr indexes into colind array and stores the
index location of the first nonzero entry in each row of the matrix. The nonzero entries in row i can
then be accessed as value(rowptr(i)) � value(rowptr(i+1)-1). Note that the CSR
scheme stores only the nonzero entries of the matrix. Let nnz(A) denote the number of nonzero entries
in matrix A. The storage requirement in the CSR scheme for A � � n � n is therefore 2 � nnz(A) + n + 1
units of computer memory with row-wise access to the nonzero entries of the matrix. A companion
data structure, the Compressed Sparse Column (CSC), can be defined to provide column-wise access

346

to the matrix nonzero entries using arrays rowind that stores the row indices of the nonzero entries in
value and colptr that indexes into rowind and stores the index location of the first nonzero
entry in each column of the matrix. The access to the nonzero entries in column j is provided as
value(colptr(j)) � value(colptr(j+1)-1). With both column- and row-wise
accesses the storage requirement for a sparse matrix using the compressed row/column scheme is
therefore 3 � nnz(A) + 2 � n + 2 units of computer memory, which is consistent with the design
principle for sparse linear algebra (Gilbert et. al., 2008). Associated with matrix A is a directed graph
G = (V, E) where V is the set of n vertices and there is a directed edge from vertex vi to vertex vj,
denoted (vi,vj) � E whenever aij � 0, i � j . Then nnz(A) = |E|. The first DSM computational problem,
known in the literature as partitioning, is to sequence the tasks in a task-based DSM so as to minimize
the feedback marks. As a sparse matrix problem the partitioning problem can be stated as,

find a permutation matrix P such that PTAP is block lower triangular.

Figure 3 shows a sparse matrix symmetrically permuted to block lower triangular form in which the
diagonal blocks are square submatrices. Without loss of generality we assume that the diagonal entries
of the DSM are nonzero (see e.g. MacCormack, 2006). Clearly, if the diagonal blocks are scalar
quantities (1 � 1 matrix), then A can be permuted into a lower triangular form i.e., PTAP is lower
triangular and there are no feedback marks - the ideal arrangement of the tasks in a project. It is
therefore of interest to know whether the bltf of a DSM is unique and if the diagonal blocks themselves
can be permuted to a bltf. Answers to the above questions as well as other DSM-related questions are
most conveniently provided using graph theory.
A directed path from vertex vi to vertex vj, written, vi � vj is a sequence of vertices (vi � vi1 , vi2,, �, vil

� vj) such that (vik , vik+1) � E, k = 1 � l - 1 and that the vertices in the path are all distinct. A directed
path vi � vj is called a directed cycle whenever vi = vj. A graph H = (V’, E’) is a subgraph of graph G
= (V, E) if V’ � V, E’ � E and (u, v) � E’ implies u, v � V’. A subgraph H is said to be strongly
connected if for each pair of vertices u, v � V’, u � v, v � u. A subgraph H is said to be a strongly
connected component (scc) if H is strongly connected and no other strongly connected subgraph of
graph G properly contains H. Since each vertex can belong to exactly one strongly connected
component, strongly connected components of a graph partitions the vertices of the graph and the
partition is unique. With the concept of matrix reducibility, the DSM partitioning problem can now be
viewed as a graph problem. Matrix A is said to be reducible if there is a permutation P for which the
bltf, as in Figure 3, has at least two diagonal blocks. A matrix is irreducible if it is not reducible. The
following result (see Brualdi and Herbert, 1991) characterizes the DSM partitioning as a graph
problem.
Theorem 1. Matrix A � � n � n with nonzero diagonal entries is irreducible if and only if G(A) is
strongly connected.
From Theorem 1 we can deduce that each diagonal block Aii represents a strongly connected
component of G(A) and therefore cannot itself be permuted into a block triangular form. Several
algorithms exist for finding the bltf for sparse matrices with varying asymptotic computational

347

complexity. One method, due originally to Harary (see Duff and Reid, 1978), involves computing the
power of the 0-1 matrix (a matrix where the nonzero entries are replaced with a 1) associated with
matrix A requiring O(n3) computational effort (Gebala and Eppinger, 1991). A O(n2) algorithm, due to
Sargent and Westerberg (1964), finds sccs utilizing the fact that the vertices in a cycle must belong to
the same strongly connected component. The first asymptotically optimal algorithm requiring only
O(|V| + |E|) computational effort for partitioning a directed graph into its strongly connected
components is due to Tarjan (1972). Duff and Reid (Duff and Reid, 1978) discuss an implementation
of Tarjan’s algorithm. Central to this elegant algorithm is to use a vertex stack to identify and
incrementally build strongly connected components during a depth-first search (dfs) of the graph. As
each vertex is visited (via an edge) for the first time by the dfs algorithm it is pushed onto the stack.
Using an auxiliary array of size n = |V| the so called root of each strongly connected component is
computed. Whenever a root vertex is discovered during the return from a recursive call to the dfs, all
the vertices in the same connected component (including the root vertex) are found in the stack. These
vertices, together with the root vertex, are popped from the stack and are assigned a component
number. In our example matrix, the vertices labelled 1 and 4 are the root vertices corresponding to the
two strongly connected components as depicted in Figure 4. The order in which the depth-first
traversal visits the vertices defines the permutation matrix which can be efficiently represented by a
permutation vector. For our example matrix A the graph G(A) consists of two strongly connected
components: the first consisting of vertices {v6, v2, v4} with v4 as the root and the second consisting of
vertices {v5, v3, v1} with v1 as the root. The corresponding permutation matrix P defined by P(:,1) = e6,
P(:,2) = e2, P(:,3) = e4, P(:,4) = e5, P(:5) = e3, P(:,6) =e1 can be represented by the vector (6 2 4 5 3
1).

Figure 4. The directed graph associated with the matrix of Figure 1

348

In Figure 5 the original matrix on the left is symmetrically permuted into a block lower triangular
form. The top-left diagonal block represents the first strongly connected component and the bottom-
right diagonal block represents the second strongly connected component. It is also easy to see that the
algorithm sketched above can be used to perform related computation – e.g., tearing (Kusiak and
Wang, 1993; Gebala and Eppinger, 1991) – without a second pass over the graph vertices. With
respect to the implementation of Tarjan’s algorithm for DSM partitioning we first note that since G(A)
is a directed graph, for each vertex vi we need access to edges of the form (vi,vj), aij � 0 (also known as
outgoing edges) only; therefore, the CSR representation of the sparse matrix suffices. Secondly, the
main computational step in the algorithm is to access the outgoing edges at each vertex. This is
efficiently done by j = colind(k), k = rowptr(i) � rowptr(i+1) – 1 to access
the vertices adjacent to vertex vi via the outgoing edges. Therefore, the CSR storage scheme provides
an efficient implementation of Tarjan’s algorithm.

3 CONCLUDING REMARKS
In this paper we have proposed a sparse data structure for efficiently computing with DSM matrices
and have provided a precise characterization of the computational complexity of the DSM partitioning.
Although our discussion is centred around partitioning, our proposal extends to other computations
such as tearing and clustering (MacCormack et al., 2006). We have also sketched Tarjan’s
asymptotically optimal partitioning algorithm. For sparse rectangular matrices, a more general
partitioning procedure based on bipartite graph matching that utilizes strong Hall property can be
found in Pothen and Fan (1990). The research presented in this paper is a preliminary report on the
design of a software toolkit for DSM partitioning and tearing.

ACKNOWLEDGEMENT
The author wishes to thank the anonymous referees for helpful comments on the presentation of the
paper. This research was supported in part by NSERC Discovery Grant.

REFERENCES
Dan Braha and Yaneer Bar-Yam (2004). The Topology of Large-Scale Engineering Problem-Solving

Networks. Physical Review E, 69(1).
Dan Braha and Yaneer Bar-Yam (2007), The Statistical Mechanics of Complex Product Development:

Empirical and Analytical Results. Management Science, 53(7):1127-1145, July.
Browning, T.R. (2001). Applying the Design Structure Matrix to System Decomposition and

Integration Problems: A Review and New Directions, IEEE Transactions on Engineering
Management, 48(3), 292-306.

Brualdi R. A. & Herbert J. R. (1991). Combinatorial Matrix Theory, Cambridge University Press,
Cambridge.

Duff I.S. & Reid J.K. (1978). An Implementation of Tarjan’s Algorithm for the Block Tri-
angularization of a Matrix. ACM Transactions on Mathematical Software, 4(2):137-147.

Gebala D.A. & Eppinger S.D. (1991). Methods for Analyzing Design Procedures. In L. A. Stauffer,
(Ed.), ASME Design Technical Conferences, 3rd International Conference on Design Theory

349

and Methodology, DTM '91, pp. 227-233, Miami, Florida, 22.-25.09.1991.
Gilbert J.R., Shah V.B. & Reinhardt S. (2008). A Unified Framework for Numerical and

Combinatorial Computing. Computing in Science and Engineering, 10(2):20-25.
Hossain S. & Steihaug T. (2010). Graph Models and their Efficient Implementation for Sparse

Jacobian Matrix Determination, to appear in Proceedings of the Cologne-Twente Workshop on
Graphs and Combinatorial Optimization, Cologne, Germany.

Hossain S. (2009). CsegGraph: A graph colouring instance generator. International Journal of
Computer Mathematics, 86(10):1956-1967.

Hossain S. & Steihaug T. (2006). Graph coloring in the estimation of sparse derivative matrices:
Instance and applications. Discrete Applied Mathematics, 156(2):280-288.

Kusiak A. & Wang J. (1993). Efficient Organizing of Design Activities. International Journal of
Production Research, 31(4):753-769.

MacCormack A., Rusnak J. & Baldwin C.Y. (2006). Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code. Management Science,
52(7):1015-1030.

McGill E.A. (2005). Optimizing the Closures Development Process Using the Design Structure
Matrix, Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Pothen A. & Fan C. (1990). Computing the Block Triangular Form of a Sparse Matrix. ACM
Transactions on Mathematical Software, 16(4):303-324.

Sargent, R.W.H. and Westerberg, A.W. (1964). “Speed-up” in Chemical Engineering Design. Trans.
Inst. Chem. Engrs., 42:190-197.

Tarjan, R.E. (1972). Depth first search and linear graph algorithms. SIAM J. Comptg., 1:140-160.
Thebeau R. E. (2001) Knowledge Management of System Interfaces and Interactions for Product

Development Processes, Master’s Thesis, Massachusetts Institute of Technology, Cambridge,
MA.

Contact: Shahadat Hossain
University of Lethbridge
Department of Mathematics and Computer Science
4401 University Drive
Lethbridge, AB T1K 3M4
CANADA
Phone: (1) 403 329 2476
Fax: (1) 403 317 2882
e-mail: shahadat.hossain@uleth.ca
URL: http://www.cs.uleth.ca/~hossain

350

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Efficiently Computing with DesignEfficiently Computing with Design
Structure Matrices

Shahadat Hossain

Department of Mathematics and Computer Science
University of Lethbridge, Alberta

Canada

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

OutlineOutline

• Motivation and Background
Effi i t C t R t ti f L l DSM• Efficient Computer Representation for Large-scale DSM

• Problem Formulation
• Strongly-connected Components in Linear TimeStrongly connected Components in Linear Time
• Concluding Remarks

12th International DSM Conference 2010- 2

351

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

The DSMThe DSM

The DSM depicts pair-wise dependency between system
l telements
– Only a small fraction of the possible dependencies are actually

presentpresent
– The dimension of the matrix is large (102 ~ 106 or more)
– Important DSM computations have combinatorial components

• Partitioning: Rearrange the columns and rows to reduce the feed-
back marks.

• Tearing: Remove a subset of marks that optimizes certain g p
objective function

12th International DSM Conference 2010- 3

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Large-scale Problems (1)Large scale Problems (1)
A. MacCormack, J. Rusnak and C. Y. Baldwin, Exploring the Structure of Complex

Software Designs: An Empirical Study of Open Source and Proprietary Code, g p y p p y
Management Science, 52(7):1015-1030, 2006.

Mozilla Linux
Number of source files 1684 1778
Function/source file 17.7 12.8
Memory to store full
matrix (4 bytes/element)

13.5 GB 7 GB

12th International DSM Conference 2010- 4

352

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Large-scale Problems (2)Large scale Problems (2)
The Statistical Mechanics of Complex Product Development: Empirical and Analytical

Results.Management Science. Vol. 53 (7). pp. 1127-1145. July 2007.g () pp y

Problem Dimension Number of
nonzeros

Density (%)

Vehicle 120 417 2.89
Operating
Software

466 1245 3 X 10-2

Software
Pharma. Facility 582 4123 3.4 X 10-3

Hospital Facility 889 8178 1.3 X 10-3p y

12th International DSM Conference 2010- 5

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Sparse Matrix Representation and ComputationSparse Matrix Representation and Computation
• Computer representation of a sparse matrix should be proportional to

max(n nnz) computer wordsmax(n, nnz) computer words
– Coordinate storage: three arrays I (row index), J (column index), v (value) of

size nnz, each;
– Compressed row (column) storage: three arrays rowptr of size n+1 colind– Compressed row (column) storage: three arrays rowptr of size n+1, colind

of size nnz, and value of size nnz
– Compressed diagonal storage
– …

• Running time of a basic sparse matrix operation (e.g., sparse matrix
multiplied by a dense vector) should be proportional to the size of the
data accessed and the number of nonzero floating point operationsdata accessed and the number of nonzero floating point operations.

12th International DSM Conference 2010- 6

353

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Compressed Sparse Row (CRS) RepresentationCompressed Sparse Row (CRS) Representation
• Storage

requirement in
CRS scheme:

nnz + nnz + n +1

= 2 nnz + n + 1= 2 nnz + n + 1

• Column
indices of the
nonzeros in
row i:row i:

colind(l)..colin
d(h)

l = rowptr(i)

h = rowptr(i+1)
-1

12th International DSM Conference 2010- 7

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

A DSM and its GraphA DSM and its Graph
• For a sparse matrix A define a

directed graph G(A) = (V E)directed graph G(A) (V, E)
where

– There are n vertices:
V = {v1 v2 v }V {v1, v2, …, vn}

– for aij � 0, i � j there is a
directed edge from vi to vj,
denoted (v v) in Edenoted (vi, vj) in E

• |V| = n, |E| = nnz

12th International DSM Conference 2010- 8

354

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

DSM PartitioningDSM Partitioning
Matrix Partitioning Problem

Given a task based DSM A find a permutation matrix P such that the numberGiven a task-based DSM A find a permutation matrix P such that the number
of feed-back marks in PTAP is minimized (over all such permutation of the
rows and columns of A).

Observations:Observations:
• A permutation matrix is a (column/row) permuted identity matrix.

• If PTAP is lower triangular then the permutation P results in optimum
arrangement of the tasks.

– Not all DSM can be permuted to lower triangular form.

“Find a Permutation Matrix P Such that PTAP is Block Lower
Triangular”Triangular

12th International DSM Conference 2010- 9

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Block Lower Triangular Form (bltf)Block Lower Triangular Form (bltf)

• The diagonal blocks are square
• k = n implies PTAP is lowerk n implies P AP is lower

triangular
• k = 1 implies PTAP yields no

improvement w.r.t. feedback p
marks

Matrix A is reducible if �P such that
PTAP has at least two blocks i.e.,
(k 2)(k 	2)

K = 1 implies irreducible

• Can the diagonal blocks
themselves be permuted into bltf
?
I bltf d iti i ?• Is bltf decomposition unique?

12th International DSM Conference 2010- 10

355

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

The Graph ProblemThe Graph Problem

A directed path from vertex vi to vertex vj, written, vi� vj is a sequence of
vertices (vi � vi1 , vi2 ,�, vil � vj) such that (vik , vik+1) � E, k = 1� l- 1 andvertices (vi � vi1 , vi2,, , vil � vj) such that (vik , vik+1) � E, k 1 l 1 and
that the vertices in the path are all distinct.

A path is a cycle if the start and the end vertices are the same.
A graph H = (V’ E’) is a subgraph of graph G = (V E) if V’ � V E’ � E andA graph H = (V , E) is a subgraph of graph G = (V, E) if V � V, E � E and

(u, v) � E’ implies u, v � V’.
A subgraph H is said to be strongly connected if for each pair of vertices u, v

V’ u v v u� V’, u � v, v � u .
A subgraph H is said to be a strongly connected component (scc) if H is

strongly connected and no other strongly connected subgraph of graph G
l t i Hproperly contains H.

Theorem (Brualdi and Herbert, 1991).
Matrix A � � n � n with nonzero diagonal entries is irreducible if and only if

G(A) is strongly connected.

12th International DSM Conference 2010- 11

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Algorithms and ComplexityAlgorithms and Complexity
• Diagonal blocks cannot themselves be permuted into bltf.
• Strongly connected component i corresponds to the diagonal block Aii;g y p p g ii;
Matrix-based Algorithms:

– O(n3) algorithm due to Harary (Harary F., J. Math. Phys. 38, 1959) consists of
repeatedly multiplying the binary matrix A with itself.

G h b d Al ithGraph-based Algorithms:
– O(n2) algorithm due to Sargent and Westerberg (Sargent R.W.H. and

Westerberg A.W., Trans. Ins. Chem. Engrs. 42, 1964)
Optimal Algorithms:Optimal Algorithms:

– The first O(n+nnz) algorithm due to Tarjan (R. E. Tarjan, SIAM J. Comput.
1(2), 1972) relies on depth-first search (dfs) technique to find strongly
connected component.

– The Kosaraju-Sharir (M. Sharir, Computer and Mathematics with Appl., 7(1),
1981) algorithm performs two dfs of the graph; the second dfs is performed on
the modified graph.

– The Cheriyan, Melhorn, Gabow algorithm (J. Cheriyan and K. Melhorn,The Cheriyan, Melhorn, Gabow algorithm (J. Cheriyan and K. Melhorn,
Algorithmica 15, 1996; H.N. Gabow, Inf. Proc. Let. 74(3-4), 2000) maintains all
the sccs during dfs

12th International DSM Conference 2010- 12

356

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Tarjan’s Algorithm for finding Strongly Connected
Components

Alg. SCC_Tarjan
In: Directed graph G = (V,E)

Alg. Dfs (v)
Method:

Out: list cmpt[1 .. n]
Method:

initialize array root of size n;
i iti li df f i

root[v]
 v; push v onto st;
for each edge (v,w) in E do

if w is not processed then
dfsn[w]
 dfsNum;

initialize array dfsn of size n;
create an empty stack st of size n;;
initialize list cmpt;
compNum
 1;

[] ;
dfsNum
 dfsNum + 1;Dfs(w);

endif
if w is not assigned to a SCC then
if dfsn[w] < dfsn[v] thencompNum
 1;

dfsNum
 1;
for each vertex v in V do

if v is not processed then

if dfsn[w] < dfsn[v] then
root[v]
 w;

endif
endif

dfsn[v]
 dfsNum;
dfsNum
 dfsNum + 1;
Dfs(v);
dif

endfor
if root[v] is v then

pop vertices z from st until vertex v is popped, for
each such z, cmpt[z]
 compNum;

endif
endfor

endSCCTarjan

compNum
 compNum + 1;
endif

endDfs

12th International DSM Conference 2010- 13

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

IllustrationIllustration

12th International DSM Conference 2010- 14

357

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Notes on ImplementationNotes on Implementation
• For each vertex v only the outgoing edges (v,w) are needed to access v’s

neighboring vertices wneighboring vertices w
– colind(rowptr(v)) .. colind(rowptr(v+1) - 1)

• Each edge (nonzero) is accessed only once
Depth of rec rsion can at most be n• Depth of recursion can at most be n

• The root finding stack st may never contain more than n elements.
• The number of auxiliary arrays can be reduced and can be lumped

together into one large array for better data locality

12th International DSM Conference 2010- 15

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Summary and Future ResearchSummary and Future Research
Summary

• DSM partitioning is equivalent to finding strongly connected components of anDSM partitioning is equivalent to finding strongly connected components of an
associated graph

– Tarjan’s SCC algorithm is asymptotically optimal!
• The CRS scheme provides an efficient implementation for DSM partitioning

– A graph data structure is not constructed explicitly! same representation suffice for the
sparse DSM and its graph.

– The associated graph being a directed graph allows us to use only row-oriented data
accessaccess.

Future Research
• Numerical testing for large-scale DSM
• Precise computational complexity of other DSM computations• Precise computational complexity of other DSM computations
• New heuristics for computationally intractable DSM computation that exploit

“special local structures”
• Software tool developmentSoftware tool development

12th International DSM Conference 2010- 16

358

