

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED11
15 - 18 AUGUST 2011, TECHNICAL UNIVERSITY OF DENMARK

REPRESENTATION OF CROSS-DOMAIN DESIGN
KNOWLEDGE THROUGH ONTOLOGY BASED
FUNCTIONAL MODELS
Dipl.-Ing. Milan Marinov1, Dipl.-Wi.-Ing. Dan Gutu1, B.Sc. Janet Todorova1, Dr. Miklós
Szotz2, András Simonyi2, Prof. Dr. Dr.-Ing. Dr. h.c. Jivka Ovtcharova

1

1Institute for Information Management in Engineering (IMI),
Karlsruhe Institute of Technology (KIT), Germany
2

ABSTRACT

Applied Logic Laboratory (ALL), Budapest, Hungary

Domain specific development environments such as MCAD/ECAD systems can partially exchange
data based on standard data formats. Due to the complex interdependencies between mechatronical
components and the diversity of the related product data, it is not possible to tackle the challenges of
cross-domain engineering by means of direct information exchange only. An overarching information
backbone, which can be understood by engineers and processed by computers, is necessary.
This paper presents a function oriented, ontology based approach to provide such a backbone. A
special functional structure models the functional interdependencies between mechatronical
components. A use case of the functional structure as information backbone for representation of
interdependencies is introduced. The use of ontology enables the definition of customizable
taxonomies for functional modeling dialects which can facilitate even more flexible support for cross-
domain engineering collaboration.

Keywords: Mechatronics, cross-domain engineering, re-engineering, functional modeling, ontologies,
product information backbone, knowledge representation

INTRODUCTION
The global economy is characterized by rapid innovation, shortened development and product life
cycles and rising customer expectations in terms of the performance, quality and price of future
products. Product innovations make a decisive contribution to the way in which these products
maintain their position in this global economy. Mechatronics – a word made up of mechanics and
electronics – represents a potential means of successfully creating future products: the close spatial
and functional integration of mechanical engineering, electrical engineering and information
technology makes fundamentally new solutions possible, that considerably improve the cost/benefit
ratio of currently known products, but can also provide a stimulus for new, as yet unknown products
[22].
Highly dedicated applications for each engineering domain are available, e.g. ECAD1 (Domain:
electronics) or MCAD2

The complex interdependencies between mechatronic components, the diversity of the related product
data and the cross-linkage of the corresponding processes are a major challenge for an effective and
efficient information management.

 (domain: mechanics) systems, but existing solutions for bridging between
domains are still rare and not sufficient.

Mechanics, electronics and software engineers use different terminology and even more important,
utilize different ways of thinking and of solving problems, which are well established inside of the
respective engineering domains. However in cross-domain3

1 ECAD: Electronic Computer Aided Design

 development there are significant gaps
between the engineering domains, which hinder the communication between the actors of the
collaboration process.

2 MCAD: Mechanic Computer Aided Design
3 “Cross-domain engineering” refers to engineering collaborations which involve at least two engineering
domains.

The cost of these gaps is familiar to anyone working in the mechatronics industry; manufacturing or
testing teams discover at the last minute, that their electrical designs won’t work with their mechanical
designs – triggering a frenzy of rework that can delay launches, erode quality, and drive up costs. The
same dynamic occurs between embedded software and overall electronics configurations.
Thus one of the major problems of cross-domain engineering is the lack of a unifying information
backbone to keep everyone on the same page at the same time. This has to be done in such a way that
the work in a specific domain can be carried out in a fashion optimal for this domain. At the same time
the backbone has to provide enough information to support the collaboration with engineers from
other domains.
The EU-project ImportNET4

Functional modeling serves as an information backbone for the cross-domain collaboration. The
functional structure contains information about the functional interdependencies of the components of
the mechatronical system. The concept of product function is relevant throughout the lifecycle of a
product and a function oriented approach can thus be utilized as an important element in capturing,
sharing and augmenting of product lifecycle knowledge.

, on whose results this paper is based on, had its focus on cross-domain,
cross-enterprise and cross-cultural collaborative engineering in a network of SMEs. The main research
activity was to provide a framework which builds a base to support cross-domain engineering tasks
within an intercultural collaboration.

The paper is structured as follows: first, the State of the Art concerning functional modeling, special
functional structures and ontologies is presented. Further, it is explained how cross-domain design
information is represented with the help of functional structures through a cross-domain collaboration
scenario. The ontology support for function-oriented cross-domain engineering is explained. The
results of this approach are discussed and concluded, and finally, an outlook is given.

STATE OF THE ART
Functional modelling
On the highest abstract level, several independent approaches exist on functional modelling in the
product development process. One of the first approaches to use shared design models – as a
predecessor of functional modelling - for designing mechatronic products comes from Cutkosky,
Mark, Tenenbaum et al. [3], who proposes with the PACT architecture a distributed agent-based
product developing environment to share concepts and terminology for communicating knowledge
across disciplines, an interlingua for transferring knowledge among these agents, and a communication
and control language that enables the agents to request information and services. Ensuring that the
interacting constraints that must be met by the set of components making up the design are fulfilled is
done through a design framework described by shared design domain ontologies.
Umeda and Tomiyama proposed in [21] the concept of Function-Behaviour-State (FBS) modelling,
where a function is defined as an association of intention and behaviour, and is causally and task-
based decomposed into subfunctions. Based on the resulting FBS diagram, a FBS modeller can search
for appropriate behaviours for a required function, identify inconsistencies and propose modifications
to solve these inconsistencies, or identify and reuse functional redundancies.
Philosophical, physical and technical analysis on technical development postulates that any new
invention of technical systems can handle three kinds of functional objects: Material, Energy and
Information ([15], [16]). Different taxonomies were developed on this principle, like for example
NIST by Szykman and the Functional Basis by Stone and Woods [5]. The Reconciled Functional
Basis, resulted from the comparison and combination of these two vocabularies, product functions can
be described by a discrete set of Flows (three functional objects) and a functional basis of Functions
(discrete set of eight functional verbs).
An abstract product function can be described in a black-box flow model with input function object
(Material, Energy, Information), the functional verb (what does the function do?) and a resulting
output function object which can of course be input for downstream functions. A functional structure
(flow model) can be developed.
Based on the abstract modelling scheme, several taxonomies exist to concretize functions. The
functions on the most detailed level are called special functions. A hierarchical three-step-procedure to

4 FP6-033610

derive the special product function from the abstract product functions under a given taxonomy and
vice-versa can be read in [5].

Functional modelling approach: Special Functional Structure
Using the functional basis of verbs and objects as building blocks, function structures can be
developed. The so called special functions should formally enable modelling of cross domain
products. The process of creating the functional structure depends on how the borders of the system to
be modelled are defined and on the intentions of the modeller. For example, a book usually has the
function to carry information, but besides information characteristics like data volume and language, it
has physical properties like width, height, depth and weight. Thus a book can also be used for example
to support a digital projector, provided that it has the right physical properties. Depending on the
intentions, emphasis can be put on the information or physical properties.
A special function structure modelling notation taking more than just taxonomy into account was
conceived at the IMI. Functional objects consist of Material, Energy and/or Information and
furthermore do have material-, energetic- and informative properties that can describe taxonomized
state of aggregation, physical principles and informative aspects. The profound modelling notation can
be read in [11]. Moreover, by identification tags and additional domain origin information, the special
function structure (shortened to SFS) allows the cross domain representation of functional knowledge
about a product in a formal way, which can be processed by a computer. The special functional
structure modelling notation is shown in Figure 1. A simple example of the modelling notation can be
seen in Figure 2.

IMI – Special Function Structure
function notation

<<functional object taxonomy>>
free functional object name

<<functional (verb) hierarchy>>
free functional verb name

relation notation

embodiment relation

Input / Output relation

Control relation

grouping notation

functional (verb) group functional object group

<<Material/Solid/Composite>>
Deep-frozen Vegetables

<<Convert>>
Defreeze, Heat-up and Prepare

Vegetables

<<Material/Solid/Particulate>>
Heated-up Vegetables

<<Material/Mixture/Liquid-Gas>>
Hot Water and Steam

<<Energy/Electrical/Current>>
Electric Power Supply

<<Signal/Control/Discrete>>
Duration of Heating

<<Signal/Control/Discrete>>
Required Power Input

<<Material/Solid/Object>>
Microwave Oven

Figure 1: Special functional structure modelling notation

Figure 2: The heating-up of vegetables in a microwave oven modelled using the IMI modelling notation

In the example in Figure 2, the heating up of vegetables in a microwave oven is modelled according to
this notation. The frozen vegetables are hereby transformed into heated-up vegetables by addition of
heat, with hot water and steam as a by-product. For this, electric energy is transformed into heat by the
microwave oven. The oven also receives as (user) input the required power and the duration of the
heating. Accordingly, the “Microwave oven” functional object embodies the function “Convert”, as it
converts electric energy into heat. The function “Convert” receives as input the material functional
object “Deep-frozen Vegetables”, the energy functional object “Electric Power Supply”, as well as the
information functional objects Required Power Input” and “Duration of Heating”. The output of the
function “Convert” are the material functional objects “Heated-up Vegetables” and “Hot Water and
Steam”.
In addition to the special functions, in this paper we also use the concept of customer functions. Such
functions represent the customer view on the system. Customer functions can be realized by one or
more special functions. A special function can also realize multiple customer functions.

Ontologies
The notion of ontology is widely used in the last decades, but different schools and communities
understand it in different ways. In [4] there are listed 7 different interpretations of the term – and we
do not consider this to be complete. We quote the definition given by [19] as the most adequate:

An ontology is a formal, explicit specification of a shared conceptualization. Conceptualization refers
to an abstract model of some phenomenon in the world by having identified the relevant concepts of
that phenomenon. Explicit means that the type of concepts used, and the constraints on their use are
explicitly defined. Formal refers to the fact that the ontology should be machine-readable. Shared
reflects the notion that an ontology captures consensual knowledge, that is, it is not private of some
individual, but accepted by a group.
Conceptual adequacy and expressivity is especially important in engineering ontology applications
that aim at supporting the creation, analysis or simulation of engineering designs, and this importance
has led to a substantial amount of research into the problem of formalizing the central concepts of
engineering, e.g. that of the structure, function and behaviour of artefacts. In this area, important work
has been done on formalizing Chandrasekan's and Josephson's influential characterization of
behaviour and function in the DOLCE upper ontology framework ([1], [2], [13]), and the relationship
between devices and their functions [8]. The possibilities of providing an adequate ontological
representation of the physical and geometrical characteristics of assemblies have also been intensively
researched (see e.g. [7]). The idea of functional ontologies is presented in detail by Kitamura and
Mizoguchi in [9].
For the realization of the idea of ontology-supported functional modeling, we shall introduce some of
the concepts, which will be used further in this paper.
OWL
OWL is an abbreviation for Web Ontology Language. OWL supports the hierarchical representation
of classes, attributes and associations of those classes and their interconnections.
OWL enables the formal representation of domain concepts, which can be used as a knowledge base
for further managing and processing. OWL is a semantic mark-up language standardized by the W3C
consortium for development, publishing and exchanging of ontologies in the World Wide Web.
SWRL
SWRL is a Semantic Web rules-language, combining sublanguages of the OWL Web Ontology
Language with those of the Rule Mark-up Language.
It extends the set of OWL axioms to include Horn-like rules. It thus enables Horn-like rules to be
combined with an OWL knowledge base [6].
Rules are of the form of an implication between an antecedent (body) and consequent (head). The
intended meaning can be read as: whenever the conditions specified in the antecedent hold, then the
conditions specified in the consequent must also hold.
For the purpose of readability and understanding, we will use a Human Readable Syntax instead of the
XML Concrete Syntax for the representation of the SWRL rules. In this syntax, a rule has the form:

antecedent →

consequent

where both antecedent and consequent are conjunctions of atoms written a1 ^ ... ^ an

. Variables
are indicated using the standard convention of prefixing them with a question mark (e.g., ?x). Using
this syntax, a rule asserting that the composition of parent and brother properties implies the uncle
property would be written:

parent(?x,?y) ^ brother(?y,?z) → uncle(?x,?z)

Built-Ins
Built-Ins are predefined functions which can be used in the context of SWRL rules. For instance,
comparison operations such as “less than” or “equal”, or mathematical operations such as subtraction
or division are implemented as Built-Ins.
The set of built-ins for SWRL is motivated by a modular approach that allows further extensions in
future releases within a (hierarchical) taxonomy.
The following example shows the usage of a Built-In for Comparison:
swrlb:lessThan(?x,10)

SQWRL
SQWRL (Semantic Query-Enhanced Web Rule Language) is a SWRL-based language for querying
OWL ontologies. It provides SQL-like operations to retrieve knowledge from OWL. SQWRL takes a

http://www.w3.org/Submission/SWRL/�
http://en.wikipedia.org/wiki/Web_Ontology_Language�

standard SWRL rule antecedent and effectively treats it as a pattern specification for a query. It
replaces the rule consequent with a retrieval specification [14].
The following example shows a SQWRL query:

Person(?p) ^ hasAge(?p, ?a) → sqwrl:select(?p, ?a) ^ sqwrl:orderBy(?a)

This query will return pairs of individuals and ages with one row for each pair. The results are ordered
using the orderBy Built-In (sqwrl:orderBy).

USING FUNCTIONAL STRUCTURES FOR REPRESENTATION OF CROSS-
DOMAIN DESIGN INFORMATION
The functional structure serves as a model-based notation for information relevant for the cross-
domain engineering collaboration. Product data, e.g. components, requirements, properties etc., are
organized around the functional structure, utilizing it as an information backbone. In this section an
example for the representation of cross-domain interdependencies is introduced. An example product
illustrates the usage of the functional structure.

Cross-domain engineering collaboration scenario
The mobile robot is a product which can manipulate objects instead of humans in dangerous
environments, such as coal mines. The robot has a tracked chassis with tracked legs, which enables it
to be used in terrains with variable difficulty. In its basic variant, the robot can perform functions such
as movement (e.g. driving in plane, climbing stairs, crossing ditches) and manipulation of objects with
a robot arm. The basic variant has a total weight of 73 kg, however, it does not include explosion
protection.
Based on this variant, according to customer requirements, two more advanced variants with explosion
protection are developed by collaborating SMEs. A passive protection variant includes explosion
protection by means of a tougher body with 8 mm thick wall which can withstand an internal
explosion. The passive protection variant has a mass of 260 kg. The higher mass of the mechanical
component “casing” is the main reason for the increased the weight of the robot. The changes of this
component affect parts from other engineering domains. Due to the increased mass, the electrical
drives used for robot movement are not able to perform all required operations. The engineers have to
check which customer functions can still be performed.
A more complex, active protection variant is developed which includes explosion protection utilizing
inert gas to fill the robot body in order to prevent an internal explosion. This variant requires some
additional mechanical, electrical and software components, such as a gas cylinder, gas pressure sensor,
CH4

The collaborative development is performed by the companies SIASUN

-concentration sensor, two valves, as well as a new software module for controlling the inert gas
pressure inside the robot. The thickness of the body remains the same as in the basic robot variant (1,5
mm). Consequently, the active explosion protection variant weighs 80 kg.

5 (China) and CADCAM6

The Croatian mechanics engineer Mr. Kovac, responsible for the customer function “explosion
protection” proposes firstly a passive explosion protection design. The Chinese electric/electronics
engineer Mr. Ni, responsible for the customer functions “drive in plane” and “climb stairs” finds out in
a discussion with the Chinese mechanics engineer Mr. Wang, responsible for the components of the
chassis that the higher mass of the passive protection variant leads to some limitations of the
movement functions: The function “Climb Stairs” cannot be fulfilled. This information needs to be
communicated and stored using the functional structure.

(Croatia). SIASUN is responsible for the implementation of the basic robot functionality of the robot,
such as movement (e.g. climbing stairs) and user interaction with the robot. CADCAM is responsible
for the implementation of the explosion protection functionality. An actor in the engineering
collaboration can take on different roles, such as: Component responsible, function responsible,
mechanics / electronics / software developer etc.

5 SIASUN Robot & Automation Co., Ltd., Shenyang, China
6 CADCAM Design Centar d.o.o., Zagreb, Croatia

Figure 3: Example product “Mobile Robot”

Obviously, not only the “climb stairs” customer function, but also other customer functions which are
realized by the special functions grouped under “transport robot” can be influenced from changes of
the robot weight. The engineers decide to model the functional dependencies in a more general way in
order to be able to automatically detect similar problems in the future. For the purpose of this example,
we take in consideration two of the customer functions: “climb stairs” and “drive in plane”.
Mr. Ni discusses with Mr. Wang what would be the maximum allowed weight of the robot in order to
fulfil these functions, without having to perform changes on the chassis or other components. Mr.
Wang calculates the following maximum allowed weights: 280 kg for “drive in plane” and 120 kg for
“climb stairs” customer function. These values are stored in requirements attached to the customer
functions.
The functional dependencies between the “transport” functions and the weight of the robot (and in
particular of the casing which caused the initial problem) are stored in rules in the ontology. The rules
define that if some of the customer functions which are realized by the “transport” special functions
have requirement with a weight limit, the weight of the robot should be checked. If it is greater than
allowed, the corresponding customer function cannot be fulfilled and a warning is shown in the
console.
The information about functional dependencies can be automatically recalled and used by the MDET
tool which recognizes the role of the user and the context in which he is working. For example, if the
user has opened a functional structure of the mobile robot where the customer function “climb stairs”
is present (see Figure 1) and she wishes to reuse the customer function “explosion protection” in the
passive variant, which is realized by the special function “isolate robot internal space”, the rules
defining the dependencies are used to check, if the total weight of the robot exceeds the maximum
allowed weight. If a problem is discovered, corresponding warnings are shown in the console tab.

ONTOLOGY SUPPORT FOR FUNCTION ORIENTED CROSS-DOMAIN
ENGINEERING
The functional structure as well as the additional information about functional interdependencies are
stored and managed by ontology. In this section we will present the detailed ontology model of the
functional structure as well as the rules which represent the interdependencies. Further, we will show
how relevant information can be extracted using ontology queries.

Ontology for functional modeling
Design ontologies
In ontology modelling it is highly important to identify the individuals. Obviously, the items occurring
in a design are not identical to the physical objects that are manufactured according to the design in

question, for example a microcontroller figuring in the design of a robot is different from the physical
microcontrollers contained in concrete robots. Moreover, an item appearing in a design can occur in
several documents about it. The individuals of the design ontology can be neither physical objects nor
signs appearing in documents: they must be mental objects corresponding to designs or design
components. For all components of a design there is a corresponding class in the manufacturing model
that contains the physical objects manufactured according to the design element in question, and also a
corresponding class in the documentation model, which contains signs referring to the element (it is
advisable to treat the design, manufacturing and documentation models as separate ontologies, and
express their connections via ontology-mappings – see [12]). A more detailed discussion of general
problems regarding design ontologies can be found in [17].
Ontology for functional design
In order to construct the ontology fragment needed for functional modelling, we have to examine the
properties, relations and attributes of the individuals that figure in a functional model. Let us collect
what can be said about a function instance, e.g. the special function „Isolate robot internal space”
occurring in Figure 4

• it belongs to the given functional design;
• it has a name given by the designer;
• it belongs to a class of the functional basis hierarchy (or to a class in an another standardised

function hierarchy);
• functional objects can be connected to it by the input/output relation (see Figure 1);
• functional objects can be connected to it by the control relation;
• functional objects can be connected to it by the embody relation;
• functions can be grouped together into a functional group;
• customer functions can be connected to special functions with a isRealizedBy relation (inverse:

realizes);

Manipulate
Objects

Drive in plane

Climb stairs

Explosion
protection

<<Channel/Transfer/Transport>>
Transport robot

<<Channel/Guide/Rotate>>
Move main caterpillars

<<Channel/Guide/Rotate>>
Move legs

<<Channel/Guide/Rotate>>
Move leg caterpillars

<<Channel/Guide>>
Manipulate objects

<<Branch/Separate/Divide>>
Isolate robot internal space Casing

Chassis

Robot arm

<<Channel/Transfer>>
Manipulate and move objects

R: Max
weight
280 kg

R: Max
weight
120 kg

Figure 4: Functional structure fragment of the mobile robot with passive explosion protection

Clearly function and functional object individuals are needed. Their names (e.g. “Transport robot”) do
not identify their occurrences, therefore the individuals have to get identifiers, and the names are given
as attribute values. The functional basis terminology names classes; the corresponding classification of
the individuals can be given by the instance of relation (e.g. << Magnitude/Change/Condition >> can
be specified by stating that the individual is an instance of the class Condition). We use the has-input,

has-output relations to connect function instances to functional object ones. A relation named in
connects the individuals to the functional design individual in question.

Figure 5: Multi Domain Engineering Tool with functional structure

Further on, the function „Isolate robot internal space” in Figure 4 is embodied by a functional object
called “Casing”. This reflects the fact that the casing provides the encapsulation of the robot internal
space from the environment. The ontology fragment in Figure 6 shows a special function F2 which is
an instance of the class “Divide” and is embodied by the functional object O2 (“Casing”). The special
function F2 realizes the customer function CF3 (“Explosion protection”).
Special functions can be organized in a hierarchy, e.g. the functions “Move main caterpillars”, “Move
legs”, “Move leg caterpillars” are sub-functions of “Transport robot”. Figure 6 shows for example that
the special function F1 (“Transport robot”) contains the special functions F1.1, F1.2, F1.3.
Figure 6 shows the ontology model of the functional structure.
Based on the functional structure of the mobile robot (see Figure 4), and on the OWL-ontology in
Figure 6, we can define ontology rules and queries which represent the interdependencies between
functions and components. The following code shows the rule/query which retrieves the information
about all supported customer functions which might be affected by the change of the robot weight:

1 OntologyFM:hasChild(OntologyFM:TransportRobot, ?ef) ^
2 OntologyFM:realizes(?ef, ?cf) ^
3 OntologyFM:requirement_maxWeight(?cf, ?max_w) ^
4 OntologyFM:Assembly(?a)^ OntologyFM:hasPart(?a, ?c) ^ OntologyFM:Component(?c) ^
5 OntologyFM:hasWeight(?c, ?w) ˚

6 sqwrl:makeSet(?s, ?w) ˚ sqwrl:sum(?sum, ?s) ^ sqwrl:groupBy(?s, ?a) ^
7 swrlb:lessThan(?sum, ?max_w) →

8 sqwrl:select(?a, ?cf)

This ontology rule is defined using SWRL rule language and SQWRL query language. The rule
consists of an antecedent (left hand side of →) and a consequent part (right hand side of →) and is
explained in detail below.

Figure 6: Functional structure modelled in ontology

Rule antecedent:
Rows 1-3: Getting the required values for maximum robot weight, which a customer function can
handle.
(1) By changing the customer function “Explosion protection”, the engineer is changing the casing
of the product which affects the weight of the robot. Because the weight might affect any of the
transport functions of the robot, the rule starts with finding all children (sub-functions) of the special
function “Transport Robot”. Result: Move main caterpillars, Move legs and Move leg
caterpillars.
(2) This line retrieves the customer functions which are realized by the special functions found in the
previous line. Result: Drive in plane and Climb stairs.
(3) Gets the requirements for maximal weight, specified earlier by the engineer. Result: in the
variable ?max_w now holds the requirements for the functions Drive in plane (max_w = 280kg)
and Climb stairs(max_w=120kg). Those values are used for comparison with the calculated robot
weight.

Rows 4-7: Calculating the total weight of each of the robot variants and comparing it with the required
maximum weight.
(4-5) Finds the weights of the building parts of each of the variants of the robot, so that these values
can be used for calculations in the next step.
(6-7) Using the SQWRL Built-Ins makeSet, sum and groupBy, this line creates a set of the parts’
weight for each robot variant, and then iterates trough the set and aggregates the elements in the
variable ?sum. The SWRL Built-In for comparison lessThan compares the total robot weight with
the requirements for maximum weight.

(8) At this line we make a query for retrieving pairs of the type (robot version, supported
customer function).

Rule consequent:

(Robot1, ClimbStairs)
(Robot1, DriveInPlane)
(Robot2, DriveInPlane)
(Robot3, ClimbStairs)
(Robot3, DriveInPlane)

Note: In the shown rule we check only the customer functions, which could be possibly affected by the
change. According to the cross-domain engineering collaboration scenario, these customer functions

can only be realized by children of the “Transport robot” function. The variants Robot1 and Robot3
are able to fulfil both customer functions “Drive in plane” and “Climb stairs”, because their total
weight is less than the required maximum weight in both cases. Robot2 fulfils only the customer
function “Drive in plane”, because its’ weight exceeds the required maximum value for “Climb stairs”.
The result of the created rule is processed by MDET according to the context. Because in our example
the user has selected the context of Robot2, MDET issues a console warning, that the robot variant,
which is currently being modelled, cannot fulfil the “Climb stairs” customer function.

Customizable taxonomies for functional modelling dialects
The experiences made in the application of functional modelling in ImportNET showed that it is
possible that the functional structure for a particular system can be modelled and interpreted
differently by different engineers. The issue is even more evident if cross-enterprise and cross-cultural
issues come into play.
One of the causes for this problem is the low granularity of the functional modelling taxonomies for
functional verbs and functional objects. The categories defined by these taxonomies are relatively
general. In this way the amount of functional verbs and objects is kept relatively low. For a “classical”
functional modelling approach, this is a necessity:

1. To enable an efficient functional modelling process, the taxonomies have to be kept compact.
In this way, the people creating and using the functional structure have the possibility to get
familiar with the functional verbs and objects and can use them fluently.

2. The taxonomy of functional verbs and objects defines the building blocks (the basis) for
functional modelling. In order to enable the modelling of a great variety of systems in an
uniform way, the elements of the taxonomy have to be on a general level. With an increasing
granularity of the taxonomy it becomes difficult to “reach an agreement”, to find elements
which apply equally well in different products and enterprises, and at the same time to keep
the taxonomy manageable.

The functional modelling methodology of the IMI addresses this issue by enabling the engineer to add
a free name (textual description) to functions and functional objects. In this way, the engineer can
document his personal interpretation of the function/functional object. This approach is a step forward
in reducing the ambiguity of a functional structure, which works well for single engineers or small
teams inside an enterprise.
However, if engineers from different domains, enterprises and cultures are involved in the modelling
process, the free text names are difficult to comprehend because of their high granularity and high
degree of customization.
Thus in the “classical” functional modelling (as without the support of ontology), there is a gap
between the high level taxonomies of functional verbs/objects and the free text names of functions and
functional objects. This gap could be filled with the definition of enterprise (or project) specific
taxonomies for functions and functional objects, which can classify the items by multiple criteria, e.g.
previous usage of the function/functional object in combination with MCAD/ECAD-Parts and/or tests,
namespace/department in which the taxonomy is valid, purpose of the function etc.
However, the introduction of multiple dimension taxonomies on different abstraction levels raises
some considerable problems in the handling of the functional structure: The effort for managing,
synchronizing and mapping between the taxonomies explodes [11]. Using ontologies, a more flexible
language can be defined: users can create their own system of representation.
The basic hierarchy of the functional basis can be extended by different further taxonomies according
to different possible points of view. The parallel taxonomies can live together in the same ontology,
and could be used at the same time. The main point is that every working community can build their
own ontology, and so their own dialect of a common functional modelling language.
We know that engineers do not know how to use ontology editors – and they do not need to know
anything about ontologies. The case of databases is similar: information systems using databases are
used by users knowing nothing about the SQL language. The MDET functional modeller serves as an
ontology editor – of course in a restricted way. This was proved by the Ontology Integration Tool
worked out in the ImportNET project [20]. So ontologies give the users liberty to use, modify, refine
knowledge and save consistency at the same time.

DISCUSSION RESULTS
The function oriented approach presented here enables a unified view on the mechatronical system,
independent of the engineering domain. At the same time, engineers have the freedom to use the tools
and data models which are optimized for their respective engineering domains, because the approach
utilizes a higher level of modelling, which does not interfere with the existing models, but rather
shows their complex interdependencies. The function oriented view on the mechatronic system
complements the well known product structure view. It enables the intelligent, IT-based support of
tasks, such as representation of cross-domain interdependencies. Through the use of ontology,
knowledge about cross-domain interdependencies can be stored and retrieved automatically to
intelligently support engineering design tasks.

CONCLUSION AND OUTLOOK
The ontology based, function oriented approach is a step forward to semi-automated, cross-domain
engineering applications. It provides a basis on which further research can be performed.
The creation of the functional structure can be automated. One of the promising approaches, with high
industry relevance, is the generation of a functional structure from use cases. Another approach is
“form follows form” [18]. Such approaches can be utilized to provide a higher level of automation and
thus reduce the effort for the user.
Customizable taxonomies enable the definition and usage of dialects of the functional modelling
language. The MDET tool is further developed to support the definition and usage of project and
enterprise specific taxonomies with automated support for mapping (translating) between different
taxonomies.
The MDET can be extended with regard to its visualization capabilities. Virtual reality techniques can
be used in order to enable an interactive and immersive interface to MDET. Integrated visualization of
mechatronic components and the functional structure, e.g. through so called visualization metaphors,
can enhance the user experience with the virtual environment [10].
The application of the functional oriented approach for automation in the virtual validation is of
particular interest for the industry. Current research is focused on using the ontology based functional
structure for automating the process of virtual validation of product designs.

ACKNOWLEDGEMENTS
The functional basis (taxonomy of functions and functional objects) used in ImportNET and in this
paper is described by Hirtz, Stone et. al. in [5]. The example product “Mobile robot” was developed
by ImportNET partner SIASUN7. The Ontology Integration Tool (OIT) is developed by ImportNET
partner Applied Logic Laboratory (ALL8). The MDET is developed by the Institute for Information
Management in Engineering (IMI9

REFERENCES

).

[1] Borgo S. et al. A Formal Ontological Perspective on the Behaviors and Functions of Technical
Artifacts. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2009,
23(Special Issue 01), 3-21.

[2] Chandrasekaran B. and Josephson J.R. Function in device representation. Engineering with
Computers, 2000, 16(3), 162-177.

[3] Cutkosky M. R., Engelmore R. S., Fikes R. E., Genesereth M. R., Gruber T. R., Mark W. S.,
Tenenbaum J. M and Weber J. C. PACT: AN Experiment in Integrating Concurrent Engineering
Systems. In: IEEE Computer Journal, Volume 26, 1993, pp. 28-37.

[4] Guarino N. and Giaretta P. Ontologies and Knowledge Bases: Towards a Terminological
Classification. Towards Very Large Knowledge Bases, 1995, pp. 25-32.

[5] Hirtz J., Stone R., McAdams D., Szykman S. and Wood K. A functional basis for engineering
design. Research in engineering design, 2002, 13, 65-82.

[6] Horrocks, I. et al. SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/, 2011.

7 SIASUN Robot & Automation Co., Ltd., Shenyang, China
8 Alkalmazott Logikai Laboratorium Kutato Fejleszto Szovetkezet, Budapest, Hungary
9 Institute for Information Management in Engineering, Karlsruhe Institute of Technology, Germany

http://www.w3.org/Submission/SWRL/�

[7] Kim K.Y., Manley D.G. and Yang H. Ontology-based assembly design and information sharing
for collaborative product development. Computer-Aided Design, 2006, 38(12), 1233-1250.

[8] Kitamura Y., Koji Y. and Mizoguchi R. An ontological model of device function: industrial
deployment and lessons learned. Applied Ontology, 2006, 1(3), 237-262.

[9] Kitamura Y. and Mizoguchi R. Ontology-based systematization of functional knowledge. In:
Journal of Engineering Design, Volume 15, Issue 4, 2004, pp. 327-351.

[10] Krappe H. Extended Virtual Environments for interactive, immersive Usage of Functional
Models (in German), 2009 (Universitätsverlag Karlsruhe).

[11] Langlotz, G. A Contribution to the Development of Functional Structures for innovative Products
(in German), 2000 (Shaker Verlag)

[12] Maedche A., Motik B., Silva N. and Volz, R. MAFRA - A MApping FRAmework for
Distributed Ontologies. In EKAW ’02: Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web, 2002,
pp. 235–250 (Springer Verlag).

[13] Masolo C. et al. WonderWeb Deliverable D18. IST Project 2001-33052 Deliverable, available
at: http://www.loa-cnr.it/Papers/ D18.pdf, 2003.

[14] O’Connor, M. and Das, A. SQWRL: a query language for OWL.
http://bmir.stanford.edu/file_asset/index.php/1474/BMIR-2009-1395.pdf, 2011

[15] Pahl G. and Beitz W. Design Theory: Basis for effective Product Development – Methods and
Applications (in German), 6th Edition, 2005 (Springer Verlag, Darmstadt).

[16] Roth K. Designing with Design Catalogue (in German), Volume 1 Design Theory, 3rd Edition,
2000 (Springer Verlag, Braunschweig)

[17] Simonyi A. and Szőts M. The Need for an Engineering Top Ontology. In ICCME '09 conference,
available at
http://importnet.salzburgresearch.at/images/ImportNET_Bilder/Presentations/session2_miklós_s
zoets.pdf, 2009.

[18] Stone R. and Bohm M. Employing the Abstraction of Product Functionality to Unify
Mechatronic Design. In ICCME ’09 conference, available at
http://importnet.salzburgresearch.at/index.php?option=com_content&task=view&id=4&Itemid
=5, 2009.

[19] Studer, R., Benjamins VR., Fensel D. (1998): Knowledge Engineering: Principles and methods
IEEE Transactions on Data and Klnowledge Engineering 25(1-2): 161-197

[20] Szőts M. and Schneider F. Generating Ontology User Interface for Naïve Users. In ICCME '09
conference, available at
http://importnet.salzburgresearch.at/images/ImportNET_Bilder/Presentations/session2_miklós_s
zoets.pdf, 2009.

[21] Umeda Y. and Tomiyama T. FBS Modeling: Modeling Scheme of Function for Conceptual
Design. In ProceedingsWorking Papers of the 9th

[22] VDI 2206. Design methodology for mechatronic systems. Verein deutscher Ingenieure, VDI-
Gesellschaft Entwicklung Konstruktion Vertrieb, 2004, pp. 1-120.

 Workshop on Qualitative Reasoning about
Physical Systems, 1995, pp. 271-278.

http://bmir.stanford.edu/file_asset/index.php/1474/BMIR-2009-1395.pdf�
http://importnet.salzburgresearch.at/images/ImportNET_Bilder/Presentations/session2_miklós_szoets.pdf�
http://importnet.salzburgresearch.at/images/ImportNET_Bilder/Presentations/session2_miklós_szoets.pdf�
http://importnet.salzburgresearch.at/index.php?option=com_content&task=view&id=4&Itemid=5�
http://importnet.salzburgresearch.at/index.php?option=com_content&task=view&id=4&Itemid=5�
http://importnet.salzburgresearch.at/images/ImportNET_Bilder/Presentations/session2_miklós_szoets.pdf�
http://importnet.salzburgresearch.at/images/ImportNET_Bilder/Presentations/session2_miklós_szoets.pdf�

