
 

ICED13/229 1 

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED13 
19-22 AUGUST 2013, SUNGKYUNKWAN UNIVERSITY, SEOUL, KOREA 

CRITICAL FACTOR IDENTIFICATION IN MEDICAL 

DEVICE DEVELOPMENT THROUGH SUPERVISED 

LEARNING 

Marija JANKOVIC (1), Lourdes MEDINA (2), Gül KREMER (3), Bernard YANNOU (1) 

1: Ecole Centrale Paris, France; 2: University of Puerto Rico, Puerto Rico; 3: Pennsylvania 
State University, United States of America  

ABSTRACT 
This paper investigates the impact of different variables in Medical Device Development (MDD), 

where FDA (Food and Drug Administration) approval time is considered as a performance variable. 

To analyze the significance of the variables supervised Bayesian learning, the Minimal Description 

Length (MDL) algorithm, is used. A set of real FDA data, representing 474 different companies in 

USA medical device markets, from 2400 FDA approved orthopedic devices is used. The aim of the 

study is to identify which product, company and regulation factors contribute most to the variations in 

FDA decision time. 
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1 INTRODUCTION 

Although advances in technology provided many invaluable medical products to improve human 

health and sustain it, the development cost of medical devices burdens the healthcare systems as the 

industry is more technology-centric than ever before. As such, the identification of critical success 

factors for medical device development (MDD) has become increasingly important. Many factors are 

related to the likelihood of success for devices in the market; and according to the company’s ability to 

make changes, these factors are considered to be either internal or external (Medina et al., 2012). 

Internal factors include the organization’s composition in terms of the level of experience of the design 

teams (Lucke et al., 2008), along with an effective communication of the development priorities 

(Brown et al., 2008). Likewise, the execution of a complete development process (i.e., preliminary 

market analyses, financial analyses, and customer involvement) is important (Brown et al., 2008; 

Rochford and Rudelius, 1997; Millson and Wilemon, 1998). On the other hand, external factors are 

mostly related to costs and profits from the customers’ vantage point, research and development 

(R&D), clinical research and insurance companies’ reimbursement (Advanced Medical Technology 

Association, 2003). Specific issues are also addressed pertaining to intellectual property protections 

and overseas market opportunities. More importantly, the Food and Drug Administration (FDA), 

regulatory agency of medical devices marketed in the Unites States, has been identified as the primary 

factor influencing the development priorities (Advanced Medical Technology Association, 2003). 

Existing methods used for the identification of critical success factors have a number of shortcomings, 

such as the subjectivity of survey-based studies and the ability to comprehensively and rigorously 

address both internal and external factors (Medina et al., 2012). This paper addresses these 

shortcomings with the application of a Bayesian network (BN) approach to examine the impacts of 

product, company and regulation related factors on MDD performance. BN is a well-known data 

mining method, widely applied in medical diagnosis (e.g., Nikovski, 2000; Wu et al., 2007). 

Furthermore, it has been cited in the literature as a preferred method to address the limitations of other 

analyses methodologies (e.g., Venter and Van Waveren, 2007; Kim and Park, 2008). This approach 

allows for a scientifically objective analysis with the ability to simultaneously consider quantitative 

and qualitative data (Chiang and Che, 2010; Venter and Van Waveren, 2007).  

In the paper, we use the BN approach to investigate the critical factors of MDD. BN analysis is 

performed using data from 2400 FDA approved orthopedic devices. In the remaining sections of the 

paper, we first provide a summary of the reviewed literature in relation to the application of BN with 

implications on MDD; then, we introduce the methodology. Details about the data set and results 

follow before we provide conclusions. 

2 LITERATURE REVIEW 

BNs have been successfully implemented in MDD to mitigate risks and failures, improve new product 

development and provide medical diagnosis. Jiang et al. (2011) focused on the assessment of medical 

device risks and failures in the field to proactively solve issues in the manufacturing process or the 

supply chain. Their methodology involved a Health Hazard Analysis (HHA) that was based on BNs. 

Meanwhile, Rieger and Rahimi (2011) developed a Bayesian risk identification model (BRIM) as a 

mitigation strategy for human response failures related to the combined effect of interface, 

environment, and contextual influences (Rieger and Rahimi, 2011). For decision making, Atoui et al. 

(2006) used a BN approach for the risk prediction of cardiovascular events based on the patient’s data 

stored in a personal Electrocardiography (ECG) monitor and demographic information. They 

concluded that the BN approach provided better results in comparison with neural networks and 

logistic regression models. Velikova et al. (2011) presented a similar application of BNs, in order to 

predict the evolution of preeclampsia in pregnant women. 

New product development has been improved with BN approaches that allow for iterative economic 

evaluations of new devices as part of the cost-effective analysis of the development process (Vallejo-

Torres et al., 2008). Iterative economic evaluation started from early stages of the development process 

and continued with the addition of evidence throughout the development process. Yang (1997) focused 

on the last stage of the development process with a BN approach for the forecast of sales for new 

devices based on historical data on earlier launches and expert feedback. 

BNs have been widely applied for medical diagnostics. For example, Patrocinio et al. (2004) used BN 

to classify clusters of micro-calcifications for mammography diagnosis of breast diseases. While BNs 
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are mostly used for small to moderately large devices, it has also been demonstrated that BNs are 

advantageous for the diagnosis of medical problems with large complex devices (Veronique et al., 

2007).  In support of these applications, Nikovski (2000) defined engineering techniques to manage 

data issues such as incomplete or partially correct numerical probabilistic information.  

Due to benefits of the BN approach, it has been selected as the methodology for this work in an effort 

to overcome the limitations of the prior research in this field. The studies investigating critical factors 

for MDD have been mostly limited to survey-based studies (Brown et al., 2008; Rochford and 

Rudelius, 1997; Millson and Wilemon, 1998; Advanced Medical Technology Association, 2003) or 

only featured data analysis implementing statistical techniques (e.g., ANCOVA by Medina et al., 

2012). Survey-based studies are subject of criticism for their subjectivity along with the lack of 

comprehensiveness and thus non-generalizable results. Consequently, prior research included the 

analysis of FDA approved orthopedic devices and the impact of multiple factors in FDA’s decision 

time (Medina et al., 2012). Even so, the strong correlations between many of the variables did not 

permit a comprehensive evaluation. As a result, BN approach is implemented here, and is considered 

to be a more robust technique for this analysis.  

3 RESEARCH OBJECTIVES AND METHODOLOGY 

Medical device development processes are largely unexplored in detail. However, MDD is considered 

to be a particular development process due to high safety needs and the potential impact on human life. 

Increasing complexity of medical devices is also adding challenges to the development process. 

Therefore, the aim of this research is to identify critical factors to improve the efficiency of the MDD 

process. In this domain, access to historical data is very difficult; the only data source at this point is 

FDA. Furthermore, as these factors are relevant to all companies in this sector, we believe that 

investigating the critical MDD factors would be of great interest for these companies.  

In an effort to identify critical factors of MDD while responding to weaknesses in the summarized 

earlier research, we have opted for a BN based approach, and devised the research methodology shown 

in Figure 1. The choice of using BN based data mining and exploration is motivated by the advantages 

that BNs present when exploring different data and uncertainty modeling capabilities.  

 

Figure 1. Research Methodology 

We chose to use actual data. Examination of various factors also required combing through the 

published sources in engineering and business literature focusing on product development. This 

process helped us compile the potential factors. We have then carefully chosen the algorithms for the 

BN application; and finally, conducted what-if scenarios to ensure a comprehensive analysis. Further 

details about these are provided below. 
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4 DATA AND VARIABLES 

Data availability was dependent on the number of FDA approved orthopedic devices to date. As a 

consequence, the raw data did not have an equal number of samples per category, i.e., product codes
1
. 

From the complete data set of 9013 orthopedic devices (from 166 product codes), some product codes 

only had one data point while others had hundreds of data points. Only a subset (24) of these product 

codes was found to consistently have more than 100 data points for each code. In order to account for 

equal representation and hence omitting undue bias, we have randomly selected 100 devices per 

product code and included them along with their full FDA dataset. As a result, 2400 FDA approved 

orthopedic devices were randomly selected to study the critical factors of MDD. 

The variables associated with the regulatory environment include different types of classifications, 

such as submission type, regulation number, but also evaluate the level of experience of FDA with 

historical reference (HR) per body part, function and material. The HR is used to measure the level of 

experience in multiple aspects by quantifying the number of devices previously approved with the 

particular characteristic. The company experience is also considered, with the company’s HR 

measuring the number of devices previously cleared/approved for the same company. Other variables 

associated with the company include the name of the applicant company and the year of submission. 

Finally, variables associated with the product are several, ranging from different types of 

classifications (e.g., product code and risk classification) to product specific characteristics. Some of 

the product specific characteristics include the material, intended use, context of use and body part, 

among others. The performance measure (dependent variable) in the analyses is the FDA decision 

time. This value results from the calculation of the elapsed time between the company’s submission 

date and FDA’s decision date. 

5 ASSOCIATION DISCOVERING AND LEARNING ALGORITHMS WITH 

BAYESIAN NETWORKS 

In general, a BN network represents a graphical visualization of a set of “fuzzy” cause-effect rules that 

support different types of reasoning and predictive modeling. BNs are represented using directed 

acyclic graphs (DAGs) (Jensen and Nielsen, 2007), where the network is defined through a couple, 

BN=(S, P). S=(N, A) represents the structure (i.e., the graph) and “N” is a set of nodes. Each variable is 

represented as a set of mutually exclusive states. “A” is a set of edges representing the causal 

interaction between variables. The link from node N1 to N2 is defined as “N1 is a parent of N2”, and 

represents the fact that if we know the information on N1 then we can deduce the knowledge on N2. 

P represents a set of conditional probability distributions that define the probabilistic dependency 

between a node and its parents. Conditional Probability tables associated with each state of the 

variables are calculated, and provided for all variables using a generalization of the well-known Bayes 

Theorem (shown below): 

       (1) 

In this study, we used a large data set (N=2400) and based our observations on supervised learning in 

order to explore the relationships between the whole data set. The algorithms used in this work are 

developed by Jouffe and Munteanu (Jouffe and Munteanu, 2000; Jouffe and Munteanu, 2001; 

Munteanu and Bendou, 2001), and are based on the widely known Minimum Description Length 

Principle (MDL) proposed by Rissansen (1978). 

6 RESULTS & DISCUSSION  

We have used BayesiaLab 5.0 to build the relations network and then to calculate the joint conditional 

probabilities. As described earlier, we have used 2400 FDA approved orthopedic devices with the 

variables discussed. In the overall analysis 20 variables have been used (see Annex 1). However, 

supervised learning has pointed out 10 variables of direct impact on the Time of decisions (Figure 2). 

In the figure, as defined per our literature review and established categorization of variables (presented 

in Medina et al., 2011; Medina et al., 2012a; Medina et al., 2012b), red nodes indicate product 

                                                      
1
 Product codes are FDA classifications used to group medical devices with the same characteristics and 

requirements. 
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associated variables, yellow nodes indicate company related variables, and green nodes show the 

regulatory environment related nodes. 

 

Figure 2. Supervised Learning Using the Sons and Spouses Algorithm 

 

The structure of the network suggests that FDA decision time is related to FDA HR (per product 

code), Submission year, Year of Decision, HR per product function (representing company know-how 

in this process), HR for Material, and Type of Submission. This means that the information on these 

variables supports the inference on Time of Decision. Indirectly, we can see that the Regulation No. ID 

is related to the HR per Function showing that for some types of devices the delay is impacted by the 

information on security and patient safety such as materials used and risks associated, and also related 

to the FDA HR (Other Devices for the Same Body Part) showing that some types of devices have been 

investigated longer by the FDA. HR per Function is related to the Year of Decision, and this relation 

shows trends in medical device development and approval. This fact is underlying the necessity of a 

company to investigate FDA priorities in term of health security. Year of Decision has probabilistic 

inference with the Type of Submission and HR for Material.  

7 INVESTIGATING THE IMPACT ON FDA DECISION TIME 

Upon review of the network structure, the detailed observations are provided for “What-If” scenarios. 

This approach aims at varying the FDA Decision time, as a targeted variable, to make detailed 

observations of the change in distributions of observed variables. The FDA decision time distribution 

was divided into meaningful groups using K-means clustering.  

We can observe that the FDA decision time is less than 139 days (Figure 3) in 73.88% of cases. Initial 

(observed on the given dataset) distributions show that the majority of submissions are 510k and that 

in most of cases it concerns Special type (23.66%) or Traditional type (74.59%). Furthermore, in 

majority of cases we can observe that Company HR (67.25%) is less than 72.5. This decision relates 

mostly to Bone, Hip and Spinal body parts. The context of use is surgery operations; and the functions 

of the product are fixation (in 58.33%) and Prosthesis (29.17%). It can also be seen that in 95.83% of 

cases, risks classification is 2.  

If the FDA decision time is less than 139 days, we can see that it concerns 30.66% of the Special type 

and 68.28% of the traditional type. Five percent more of special types are concerned with this type of 

decision. There are also slight variations in distribution of HR for material and HR per Function. 

When the FDA decision time is between 139 and 354 (1 year) (Figure 5), we can observe changes in 

type of submissions. The traditional type is represented in 92.56% cases and Special cases represent 

only 4.84%. We also observe the changes in the year of decision; it appears that the FDA decision time 

is higher between 1997 and 2001. This can be explained partially with the FDA policy change, 

supporting the effort to diminish the decision time and time to market for the companies. 
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As for the FDA decision time greater than one year (Figure 6), we can observe that 92% are of the 

Traditional type and 6.51% are Original types. Original types induce always greater decision time, and 

in this case larger than one year. This is expected; in order to ensure the security of patients, FDA 

takes more precaution and time to investigate potential impact and safety issues of the strictest 

pathway given that the Original type is only for the Pre-market approvals (PMA). It can also be seen 

that this decision time was more prevalent between 1997 and 2001. Around 30% of cases have been 

investigated in this period. There is also a decrease in this long decision time after 2004. Eight percent 

less of cases are observed to be waiting for a FDA decision that is longer than a year. 11% more in 

cases of HR for Material are between 831 and 1410. The changes can be also observed in the 

distribution of HR per Function. An increase of 12% of HR per Function are observed for less than 

943, and 8% decrease in larger than 3193. 

 

 

Figure 3. Initial distributions in supervised network 

8 CONCLUSIONS  

This paper provides a BN approach for the identification of critical factors for MDD. The use of BN 

provided a more robust analysis of the relationship between variables with the development of a valid 

network of the product, company and regulatory environment variables in relation with FDA decision 

time. Some of the relevant variables included the type of submission, year of decision and historical 

reference. The analysis underlines the necessity of investigating FDA regulatory environment having 

high constraints on acceptability of devices but also investigations on previous information on 

materials and Historical references. If this information has been investigated and provided to FDA, the 

decision time seems to be decreasing. It has also been pointed out that some companies with higher 

numbers of submissions tend to have greater acceptability of devices, showing the necessity for 

companies of understanding current FDA regulatory trends as well as medical concerns that have high 

priority for a given period.  

Some of the future research directions may include investigating more the importance of product 

complexity, submission type and historical reference, along with the interrelations between the 

different variables.  
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Figure 4. Product Variables for the FDA Decision Time Cluster1 (Decision Time<139.961 
days) 

 

 

Figure 5. Product Variables for FDA Decision Time Cluster 2 (139.961<Decision Time< 
354.043) 
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Figure 6. Product Variables for FDA Decision Time Cluster 3 (Decision Time>354.043 days) 
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ANNEX 
  

Variable Name (number of levels) 
Internal or 

External 

Quantitative 

or Qualitative 
Association 

FDA's Decision Time  
External Quantitative 

Regulatory 

environment (FDA) 

Applicant (474): Company making the submission. N/A Qualitative Company 

Submission Year (33, years 1977 - 2010): Year in which 

the company submitted to FDA. 
N/A Qualitative Company 

Submission Type (2): Submission used for the device: 

510(k) and PMA. 
External Qualitative 

Regulatory 

environment (FDA) 

Submission Sub-Type (4): Sub-category to further 
describe the type of submission used: Original for PMAs, 

and Traditional, Special, or Abbreviated for 510(k). 

External Qualitative Company 

Product Code (24): FDA classification that groups 

devices with same characteristics and requirements. 
External Qualitative Product 

Risk Classification (2): Represents a classification pre-

determined by FDA to group devices based on the level 

of risk and scrutiny of their regulation. There are 3 

classifications, I, II and III. The data sets include class II 

and III. 

External Qualitative Product 

Regulation No. (16): Classification for devices that 

provide reference to the Code of Federations (CFR) that 

applies to the particular device. In comparison to the 

product code, the regulation number provides a more 

aggregated classification. 

External Qualitative 
Regulatory 

environment (FDA) 

Material (7): Specifies the material of the device or a 

device component (e.g. metal, alloy). 
Internal Qualitative Product 

Intended Use (9): Describes the intended use of the 
product in terms of the clinical need. 

Internal Qualitative Product 

Context of Use (2): Explains the setting in which the 

device is used: surgery- operating room or at the doctor's 

office. 

Internal Qualitative Product 

Body Part (7): Refers to the body part where the device 

is implemented. 
Internal Qualitative Product 

Function (5): Represents the function of the device. Internal Qualitative Product 

Number of Descriptors: Amount of descriptors used for 

the device’s product code. 
External Qualitative Product 

Number of Materials: Amount of materials described 

for the device's product code. 
Internal Qualitative Product 

FDA Historical Reference per Product Code:  Number 

of devices previously approved by FDA with same 

product code. 

External Quantitative 
Regulatory 

environment (FDA) 

Company Historical Reference: Number of submissions 

previously done by the same company (independent of 

being 510(k) or PMA) 

External Quantitative Company 

Historical Reference per Body Part: Number of devices 

previously approved by FDA for the same body part. 
External Quantitative 

Regulatory 

environment (FDA) 

Historical Reference per Function: Number of devices 

previously approved by FDA for the same function. 
External Quantitative 

Regulatory 

environment (FDA) 

Historical Reference for Material: Number of devices 

previously approved by FDA with the same other 

descriptor.  

External Quantitative 

Regulatory 

environment (FDA) 
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