
835

NordDesign 2014 
August 27 – 29, 2014  

Espoo, Finland / Melbourne, Australia 

 
 

Feature models supporting trade-off decisions in early 
mechatronic systems design  

 
 

Arno Kühn1, Christian Bremer1, Roman Dumitrescu1, Jürgen Gausemeier2  
 

1Fraunhofer IPT, Project Group Mechatronic Systems Design, Paderborn, Germany 
{Arno.Kuehn;Christian.Bremer; Roman.Dumitrescu}@ipt.fraunhofer.de 
2Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany 

Juergen.Gausemeier@hni.upb.de 
 
 
Abstract 
Many development projects cause serious challenges to their developers: a rich set of new 
features has to be implemented within a restricted schedule and tight budget constraints. 
Often, this necessitates trade-offs: Certain features are incorporated into later releases to 
reduce risk of schedule delay. To support release planning, transparency regarding possible 
feature-trade-offs is needed: What exactly is the set of all planned features, what alternatives 
exist and how do they depend on each other? Especially in mechatronic systems design 
defining possible feature-trade-offs results in a big challenge. Due to its multidisciplinary 
character, dependencies from mechanics, electronics and software have to be considered. 
Within this contribution, we introduce feature-models as an appropriate approach to bring 
transparency into trade-off decisions. The model is integrated into a modelling technique for 
early mechatronic systems specification that supports the emerging approach of Model-Based 
Systems Engineering. By this, we show how feature-models enrich the engineering of 
complex mechatronic systems. 
 
Keywords: Trade-off decisions, Feature modelling, Model-Based Systems Engineering, 
mechatronic systems 
 
1 Introduction 
Todays’ technical systems are based on the close interaction of mechanics, electronics, 
control engineering and software engineering. These so called mechatronic systems, offer 
fascinating possibilities for the integration of a continuously increasing number of new 
features. This results in an increasing complexity of the technical system and its development 
process. Additionally, shortened time-to-market and increasing cost pressure cause a serious 
challenge to many development projects: a rich set of new features has to be implemented 
within restricted schedule and tight budget constraints [1, 2, 3]. 
Product managers and developers conquer this challenge by prioritizing features and 
negotiating schedule objectives and additional resources. They intuitively search for 
flexibility and decide on trade-offs between competing project objectives, namely between 
product performance, time-to-market as well as development- and product unit costs [4]. 
Engineering in releases is a promising approach adding flexibility to development projects 
and opening up possibilities for trade-offs [5], [6]. Figure 1 illustrates this approach.  



836

  
Figure 1 Development in releases [5] 
 
Certain features are incorporated into later releases to reduce risk of schedule delay or to get 
along with scarce resources. This increases flexibility and allows for balancing project 
objectives. Which features are incorporated into which release, is decided during release 
planning. Here, features are prioritized by defining satisfactory trade-offs that accommodate 
competing stakeholder expectations [5]. 
To support release planning, early transparency regarding possible feature-trade-offs is 
needed: What exactly is the set of all planned features, what alternatives and options exist and 
how do they depend on each other? A basis for communication and cooperation is needed 
bringing together product- and project managers as well as developers. While typical 
requirement specifications do not provide the needed transparency, feature modelling offers a 
possible solution by capturing and visualizing optional and alternative features [7]. 
However, when deciding on a trade-off it is also necessary to consider dependencies and 
interactions between features. This is especially meaningful in mechatronic systems design. 
Due to its multidisciplinary character, dependencies and constraints from mechanics, 
hardware and software have to be analyzed. Therefore, it is necessary to analyze the system 
from a technical perspective. In this context, the emerging approaches in the field of Model-
Based Systems Engineering (MBSE) seem to be promising. MBSE focuses on a model that 
encompasses different views of the system. The system model forms the basis for 
communication and cooperation in a multidisciplinary project environment and pursues the 
goal of controlling product complexity with the help of being transparent [8]. A key aspect of 
the system model is the system structure. It describes the system elements and their 
relationships. Mapping features to the system structure helps to reason on feature 
dependencies and thus supports possible trade-off decisions. 
Within this contribution we will introduce an approach supporting trade-off decisions in the 
above mentioned context. In section 2, we will give a brief overview on the fundamentals of 
feature modelling. The concept of Model-Based Systems Engineering with focus on 
modelling the system structure is introduced in section 3. In section 4, we will show how 
feature modelling in combination with a system structure model supports feature-trade-off 
decisions. In section 5, we will give a conclusion and an outlook. 
 
2 Feature modelling fundamentals 
 
2.1 Definition of a “feature” 
The definitions and discussions of the term feature are manifold. Features are interpreted 
according to the context. There are very general definitions like “anything about the thing 
being designed that’s from interest” [9] to context-sensitive definitions e.g. in the field of 
Computer Aided Design (CAD), where a feature represents the engineering meaning of the 
geometry of a part or assembly [10]. Within this paper, definitions are relevant that are used 
in conjunction with feature-modelling as an emerging approach within the field of software 

Release 1 Release 2 Release 3

Development in releases

Standard process

Release 1
Other Features

„Must-have“ Features

Time



837

engineering. Riebisch defines a feature as a representation of an aspect that is valuable to the 
customer [11]. Czarnecki and Eisenecker broaden this perspective. They define a feature as a 
property that is relevant to some stakeholders and is used to discriminate between concept 
instances [12]. In the case of technical systems, these can be structural (e.g. shape, size), 
behavioural (e.g. an operation mode) as well as functional properties (e.g. cruise control of a 
car) [9]. Properties are usually described by requirements. Therefore, features are also defined 
as abstractions or groupings of requirements that both customers and developers understand 
[13]. To conclude, for this research, features are defined as a set of requirements describing 
structural, behavioural or functional properties of a system that are relevant and 
understandable for different stakeholders. They are described by a single word or a short line 
of text [7]. 
 
2.2 Feature modelling 
The feature concept is a common approach for managing variability. It is applied e.g. in 
variant management for technical systems [14] and software product line engineering [7]. It is 
used to distinguish between different product line members, each representing a possible 
configuration, differing in certain features from other configurations. For that purpose, 
conceptual relationships among features are usually expressed in feature models. These differ 
in their notation and content according to the intended use. Figure 2 illustrates two alternate 
representations. 

 
Figure 2 Different representations of feature configurations  

 
The representation on the left emphasizes the entire number of variants that is planned 
according to possible combinations of the given features. These possible combinations can be 
derived from the representation on the right, which in a slightly different notation has first 
been proposed in the context of Feature-oriented Domain Analysis (FODA) [15]. Here, a tree-
like notation shows the hierarchical organization and the relations of the features. A feature 
might be optional (depicted by a white dot) or mandatory (depicted by a black dot). Features 
can have a set of alternative sub-features, depicted by an arc. A white arc means that exactly 
one sub-feature from the set of alternatives can be chosen. A black arc is used to describe 
features that may be combined with the other sub-features of this junction. Due to its clarity, 
this representation is used in many different applications especially in software product 
development. These reach from strategic product planning over configuration management to 
release planning and project management [16].  
Depending on the application, feature models differ in the aspects they emphasize. For 
example, they can refer to different objects reaching from a product line to a single 
component. Furthermore, the included features vary according to the stakeholders involved. 
In some cases, the focus is on customer-relevant features, while in other cases also internal 
features e.g. from production are considered. 

Legend:

Washing
Machine

Loading
Type

Comfort
Functions

Model A

Model C

…

Front Load
Interior Light

Remote Vision

Top Load
Remote Vision
Mastercare
programs

… …

Washing
Machines

Loading
Type

Comfort
Functions

Front 
Load

Top 
Load

Interior
Light

Remote 
Vision

Mastercare
programs

Feature
Optional (or)

Alternative (xor)

Model B Front Load
Interior Light
Mastercare
programs

Mandatory

Optional



838

2.3 Feature models as a basis for trade-off decisions 
The concept of features is a promising approach when it comes to trade-off decisions in 
development projects, because a trade-off will be made between the features to be 
implemented. Trade-offs require a decision process, in which priorities are determined 
according to the project objectives. According to [17], priority can be seen as the relative right 
of a feature to the utilization of limited resources. Dispensable features can be delayed to later 
releases to save time, costs or any other limited resource. Alternative features can be 
implemented that may have lower performance but are achievable from a resource 
perspective.  
Determining feature priority and agreeing on a particular trade-off should follow a systematic 
decision-making process. Within this process, two main steps have to be distinguished before 
making the actual decision [17]: 1) specification of the decision problem by defining 
alternative and optional features 2) determining priority by evaluating these features.  
For step 1, feature models are an appropriate approach. They enable a transparent overview of 
the set of all planned features and their conceptual relations. In contrast to other requirement 
specification techniques (e.g. requirements lists, use-cases), they explicitly emphasize 
variability and point out optional and alternative features. Feature models are thus a good 
input for determining priorities in step 2.  
In step 2, priority for each feature is determined taking into account different aspects like 
importance to the customer, effort for implementation, time and risk. By taking into account 
more than one aspect, high priority features from a customer’s perspective may turn out to be 
less important if they are very expensive to satisfy. Typical methods for determining priority 
are Analytic Hierarchy Process (AHP), rankings or numerical assignments [18]. These 
methods deliver a prioritization list indicating which features should be included in the next 
release and which features may be delayed.  
However, following this prioritization list is not always possible as dependencies between 
features restrict certain decisions. Such dependencies might force a less important feature to 
be implemented because it is required by a highly prioritized one. Therefore, it is necessary to 
analyze for dependencies before going ahead with determination of feature priority in step 2. 
Tracing features to system components helps to bring transparency into those dependencies 
and thus supports trade-off decisions. Traceability is one key element of the emerging 
approach of Model-Based Systems Engineering. 
 
3 Model-Based Systems Engineering  
The concept of Systems Engineering encompasses a holistic consideration of a system in 
order to strengthen the understanding of the system and to solve a complex development task 
efficiently. Model-Based Systems Engineering (MBSE) contributes to this idea. It aims at a 
holistic description and analysis of a system based on models, beginning in the early phases of 
the product development throughout the whole product lifecycle. This approach thus 
constitutes the evolution of the mechatronic systems design process that is changing from a 
document-based process to a model-based one [3, 8].  
MBSE encompasses the formalized application of modelling for supporting requirements 
engineering, design, analysis, verification and validation. The focus of MBSE is a system 
model which allows a holistic perspective on the system by describing its requirements, 
structure and behavior in a domain-spanning way. The system model constitutes the basis for 
communication and cooperation in a multidisciplinary project environment; it helps to reason 
about a problem and pursues the goal of controlling product complexity by being transparent 
[8, 19]. Figure 3 illustrates two key elements of MBSE facilitating transparency.  



839

 
Figure 3 Diagrams and traceability links support transparency in system development 
 
The first is, to gain transparency by describing the aspects of a system in suitable diagrams. A 
method (e.g. SysMod [20], CONSENS [19]) in combination with a modelling language (e.g. 
SysML [20]) define what aspects have to be considered and in what kind of diagrams they are 
described. Secondly, transparency is reached by associating related information objects via 
traceability links. For example, these links allow requirements to be connected to system 
elements satisfying those requirements. This enables the identification of change impacts, 
supports the understanding why certain system elements have been created and helps to 
ensure that all requirements are fulfilled. The system elements themselves may then be linked 
to the behavior they implement or the functions they realize. 
A key aspect of nearly all MBSE-approaches is the system structure, which describes the 
elements and their relationships. Figure 4 illustrates an abstract system structure of a pump-
system based on the method and modelling language CONSENS [19]. The pump-system 
serves as an example throughout this contribution. 

 
Figure 4 Elements of the system structure 
 
The system structure contains all relevant system elements, no matter whether they are based 
on hardware, software or electronics. The dependencies and impacts between these system 
elements are described by flows derived from the known design methodology: energy, 
information and material flow (see [21]). In addition, a few more special relationships can be 
used, e.g. measurement point or a constructive relation. They have been implemented to meet 
the explicit needs of modelling mechatronic systems. 
By means of the active structure the working principles and the technical interdependencies 
between elements of a system to be developed can be modeled and visualized. The diagram is 
the basis for defining interfaces between components or modules and serves as a common 
basis for reasoning and communication.  

Propulsion User

Laundry
[Dry, Dirty]

Laundry
[Humid, Clean]Wash Drum

Washing machine

Water supply

Engine

Liquor 
ContainerWaterWater

Power

Water,
Chemical

2 Geometry
2.1 Altitude 85 cm
2.2 Width 59 cm
2.3 Depth 56 cm
2.4 Washin drum [40…55] Liter
3 Assembly

3.1 Automation level: >60%
3.2 Output: 15.000 p.a.
3.3 Manufacturing costs (max): 1.000 €

requirements

8Q�
SOXJJHG

6WDQGE\ &KRVH�
SURJUDP

3RZHU�
VXSSO\ 2Q

2XW 3RZHU�
EODFNRXW

:DVKLQJ

)LQLVKHG

System structure behaviour

Traceable relations
between elements

Engine HMI

Power
electronic

Power
supply

Power
supply

Pump
housing

Impeller

Control
electronicSensor

Power
supply

Power supply

Sensor data

Rotation

Fluid Status information,
Control command

Status
information,
Control
command

Measurement value

Heat
Transfer

Material flow

Energy flow

System element

Legend

Information flow

Measurement point

Unintended flow

Contructive relation



840

The system structure is helpful to overlook the system being developed holistically and to 
reason about technical issues. Thus, it is suitable to be considered in a trade-off decision 
process. In chapter 2, we indicated the link between a feature and its technical implementation 
to be of high importance. The MBSE approach implies the concept of mapping functions, 
requirements etc. to the system elements. Mapping features to systems elements may thus be a 
promising approach to support the understanding of the technical implications of a certain 
feature. 
 
4 Feature-models supporting trade-off decisions  
We pointed out, that a trade-off decision should stand on two pillars. First, one needs a basis, 
specifying the decisions that can be made. What are the possible trade-offs? What kind of 
alternatives exist and what are the consequences? To make a sound decision, the 
implementation of a certain feature into the system, must be considered. Doing so, the 
implications, challenges or influences induced by a certain feature can be overviewed, 
enabling a balanced decision in the second step. Here, priority for each feature is determined 
considering aspects like importance for the customer, effort for implementation, time and risk. 
We address these aspects by creating a feature model and linking it to the system’s structure 
which is given by the MBSE approach. In the following, we present a method to create this 
entity. Figure 5 presents the process in four steps.  

 
Figure 5 Process model for gaining a feature model to support trade-off decisions 
 
Step 1: Generate features out of stakeholders’ perspectives 
First, features of the examined system must be captured. Usually, these features are already 
documented somewhere, e.g. in customer requirements lists or use-cases, and thus, just need 
to be extracted. In requirements lists, differentiations like “must-have”, “should-have” and 
“nice-to-have” are already good indicators. “Should-haves” and “nice-to-haves” automatically 
induce a trade-off decision to be made. It is also helpful to take other stakeholders like the 
production-engineering into account and document their demands to the system. So, by 
scanning documents or carrying out interviews, features are gathered on which a decision 
(include/not include) can and must be made. To identify these features it is helpful to ask 

1

Generate features out of 
stakeholders’ perspectives

Identify options 
and alternatives

Determine dependencies
between features

3

2

Support trade-off decision

4

Customer 
requirements

…

KƉĞƌĂƚŝŽŶ

DĂŝŶƚĞŶĂŶĐĞ

Use Cases / 
Application Scenarios

^ŽƚŝĞƌƐƚĂŶĚ�ĞŶƚƌŝĨƵŐĞ<ůĞŝŶĞ�tĂƐĐŚƐƚƌĂƘĞ

sĞƌĞŝŶǌĞůƵŶŐƐƐƚĂŶĚWƌĞƐƐĞ'ƌŽƘĞ�tĂƐĐŚƐƚƌĂƘĞ

tćƐĐŚĞ�
ǁĂƐĐŚĞŶ

tćƐĐŚĞ�
ǁĂƐĐŚĞŶ

^ŽƌƚŝĞƌƐƉĞŝĐŚĞƌ

�ŶƚǁćƐƐĞƌŶ

�ŶƚǁćƐƐĞƌŶ

tĂƐĐŚͲ�Θ�^ĐŚůĞƵĚĞƌŵĂƐĐŚŝŶĞ�΀Ϯ΁

tĂƐĐŚĞŶ ^ĐŚůĞƵĚĞƌŶ

DĂƌŬŝĞƌͲ�ƵŶĚ�>ĂŐĞƌƐƚĂƚŝŽŶ

tćƐĐŚĞ�
ŵĂƌŬŝĞƌĞŶ

tćƐĐŚĞ�ƉƵĨĨĞƌŶ
�ƺŶĚĞů�ŵĂƌŬŝĞƌƚĞƌ�

tćƐĐŚĞ

sĞƌĞŝŶǌĞůŶ

^ŽƌƚŝĞƌĞŶ

tćƐĐŚĞ�
ƉƵĨĨĞƌŶ

Formteile,
Volltrockenware,

Flachwäsche
[verschmutzt]

Volltrockenware,
Flachwäsche

[verschmutzt]

Wäschestück
[sauber]
[feucht]

Wäschestück
[sauber]
[feucht]

Wäschestück
[sauber]

[halbtrocken]

Wäschestück
[sauber]

[halbtrocken]

Vorpuffer 12-Kammer-Waschstraße

WaschenWäsche
vorpuffern

Production process 
specification

120  C

Cheaper material

12

3

90  C 120  C

Fluid temperature

Cheaper material

Material

requires

4

…

Engine HMI

Power
electronic

Power
supply

Power
supply

Pump
housing

Impeller

Control
electronicSensor

Power
supply

Power supply

Sensor data

rotation

Medium

Status information,
Control command

Status
information,

Control
command

Medium

Measurement value

Heat
Transfer

System Structure

Develop-
ment costs

100  C resistant 120  C resistant

Temperature

Cheaper material

Material

requires

Engine HMI

Power
electronic

Power
supply

Power
supply

Pump
housing

Impeller

Control
electronicSensor

Power
supply

Power supply

Sensor data

rotation

Medium

Status information,
Control command

Status
information,

Control
command

Medium

Measurement value

Heat
Transfer

Project 
risks

…

Time to 
market

Production 
costs



841

questions like: “Is this requirement important for each application or does it aim at a special 
application or usage?”, “Does this required value actually need to be that high/low or can it be 
reduced for the typical application?” or “Are there alternatives to be considered?”. The 
engineer will then end up with a bunch of different features coming from several different 
stakeholders. In the example of the pump-system, a feature might be a new material for the 
impeller, which is promoted by the production engineering as it is cheaper but also uncertain 
in its technical behavior. Another feature might be a new requirement that demands to support 
applications with a fluid temperature up to 120°C.  
 
Step 2: Identify options and alternatives 
In the best case, each of the identified features can be implemented within time and budget. 
However, especially when it comes to risky and highly innovative projects, usually the 
contrary is the case. Time and budget are scarce and the technical solutions for new features 
are uncertain. Normally this is the point, when engineers start to negotiate on project 
objectives and search for optional features to be delayed and alternative features with lower 
risk to be implemented. Feature modelling systematically supports this process by providing 
systematic guidance and a transparent documentation. Optional and alternative features are 
searched by analyzing the features identified in step one. In this manner, a feature tree will be 
created that documents possible decisions to be made (see upper part of Figure 6).  

 
Figure 6 Mapping features to system structure 
 
The graphical representation and modelling of a feature tree have already been presented in 
chapter 2. Good sources for alternatives are e.g. preceding products or competitor products. In 
the example of the pump-system, an alternative to the 120°C fluid temperature would be to 
implement 90°C as it has been the case in the preceding product. If there are features to which 
no alternatives or options can be found, the feature does not have to be investigated any 
further. Apparently, no decision can be made on this feature if there is no alternative. 

Engine HMI

Power
electronic

Power
supply

Power
supply

Pump
housing

Impeller

Control
electronicSensor

Power
supply

Power supply

Sensor data

rotation

Medium

Status information,
Control command

Status
information,

Control
command

Medium

Measurement value

Heat
Transfer

Pump

Fluid temperature Impeller material

90  C 120  C Normal 
material

Cheap
material

Sustainable
material

Impeller

Power
electronic

Control
electronicSensorPump

housing

Cooling

Active Passive

Legend

Feature

Alternative

Mandatory

Optional

Contructive relation
Unintended flow
Measurement point
Material flow
Information flow
Energy flow

System element



842

 
Step 3: Determine dependencies between features 
Until now, the features have been modeled in a way making them seem to be separated from 
the other features. However, the technical implementation of these features may cause 
significant interdependencies. Therefore, it is important to also take the technical integration 
of a feature in the system structure into account. This link is enabled by mapping the features 
to the system elements realizing them as shown in Figure 6. Hereto, the features are first 
linked to the system elements implementing them. Then, the interdependencies of these 
system elements to other system elements have to be analyzed.  
To analyze the technical realization of a feature, the engineer should ask: “What system 
elements are involved in realizing a certain feature?”, “To what other elements are they linked 
and what features are mapped to those elements?” and “Does this technical interconnection 
gain a (maybe indirect) relation between associated features?”. Typically, “requires”- and 
“exclude”-connections are then used to model the identified interdependencies in the feature 
model. This is shown in Figure 7. 

 
Figure 7 Feature-dependencies visualized within a feature-diagram 
 
Coming to the example we applied, we first need to link the features to the system elements. 
This means, that e.g. the feature “120°C” is mapped to the pump housing. It will then have 
also effects to the power electronics because of the “Heat transfer” energy flow, modelled in 
the system structure. As the regarded temperature is also linked to the medium flowing 
through the pump, the influence on the impeller arises by itself. Secondly, other features, 
associated to the three just identified system elements have to be checked. Looking at the 
impeller, we notice the feature “cheap material” allocated to this system element. The 
engineer now has to determine whether the two features influence each other. It may be, that 
one feature is needed for the other. It may also be, that one feature excludes another – this is 
the case in our example. The cheaper material does not fit to the higher temperature. In 
addition, there is another feature linked to the power electronic. The higher temperature 
makes an active cooling necessary. Of course, it is also possible that some features have not 
been identified before and are figured out at this stage of modelling. The process of 
identifying features, modelling them and mapping them to the system structure is an iterative 
one. The interdependencies, that just have been identified give valuable input to the feature 
model. The gained information help reasoning about the trade-off decisions to be done.  
 
Step 4: Support trade-off decision 
For a sound trade-off decision, both feature model and system structure must be taken into 
account. While the first primary defines, on what a decision can be taken, the second allows 
for analyzing the technical implications and reasoning about the restrictions of feature-
combinations. Together, both models support the trade-off decision. However, to make a 
sound decision on a certain trade-off, further aspects have to be taken into account. This 

Pump

Fluid temperature Impeller material

90  C 120  C Normal 
material

Cheap
material

Sustainable
material

Cooling

Active Passive

requires excludes



843

might be costs, customer importance or technical risks. These aspects can be specified by 
attributes within the feature model. However, the actual decision and the weight, each aspect 
brings into consideration, depend on the characteristic and the objectives of the project. In this 
paper we aimed at providing a transparent basis for this decision process.  
 
5 Conclusion and outlook 
The fascinating possibilities of mechatronic systems come along with an increasing 
complexity of their development projects. Project managers and engineers are forced to 
decide on trade-offs concerning systems capability, time-to-market as well as development- 
and product unit costs. Nowadays, these decisions are often made either intuitively, causing 
unsubstantial decisions, or too late, inducing significant change effort. Therefore, early 
transparency regarding possible feature-trade-offs is needed. Originating from software 
engineering, feature models are a feasible approach. By capturing and visualizing optional 
and alternative features and interdependencies between them, they offer an important 
contribution to make sound trade-off decisions. They help to specify the decision problem 
before deciding on a particular alternative. Within this contribution we demonstrated the 
integration of feature models within a state-of-the-art design process for technical systems, 
namely the MBSE-approach. We showed how feature models make a basis of decision-
making. Mapping features to the system elements providing the implementation helps to 
reason about the technical dependencies, to understand possible impacts and to communicate 
which other decision makers involved. Based on these two pillars – feature model and linked 
system model – a sound trade-off can be made.  
The method has been successfully applied within an industrial development project. The 
considered system was much more complex and in accordance with this, the created models 
were bigger. Still, the method was applicable. In this paper, we used a much simpler example 
for illustration purposes.  
However, potential applications of feature models within the context of MBSE reach far 
beyond the field of trade-off decisions. Linking feature models to the system model 
describing the technical aspects of a system is especially promising when it comes to systems 
with high variability. Feature modelling allows describing commonalities and dependencies 
between different product concepts with only one model. By linking this information to the 
technical aspects of a system, for example, the variability of the system structure could be 
configured and visualized. This would allow for analysing and managing compatibility and 
inconsistencies of different product variants in an early stage of development. Furthermore, 
the technical impacts and challenges induced by a certain feature could be estimated. That 
way, the integration of feature modelling and MBSE would support product line planning of 
complex technical systems. However, further research still needs to be done especially when 
it comes to the integration of modelling-tools and the configuration of system structures that 
include hardware- and software elements in just one model.  
 
Acknowledgement 
This research and development project is funded by the German Federal Ministry of 
Education and Research (BMBF) within the Leading-Edge Cluster “Intelligent Technical 
Systems OstWestfalenLippe” (it's OWL) and managed by the Project Management Agency 
Karlsruhe (PTKA). The authors are responsible for the contents of this publication. 
 
Citations and References 
[1] Gausemeier, J., Frank, U., Donoth, J., Kahl, S., "Specification Technique for the 

Description of Self-Optimizing Mechatronic Systems", Research in Engineering 
Design, Volume 20, No. 4, Springer, London, 2009. 



844

[2] Fricke E., Schulz A.P., "Design for Changeability (DfC): Principles To Enable 
Changes in Systems Throughout Their Entire Lifecycle", Systems Engineering, Vol. 8, 
No.4, John Wiley & Sons, Inc, New York, 2005. 

[3] Gausemeier, J., Dumitrescu, R., Steffen, D., Czaja, A., Tschirner, C., Wiederkehr, O., 
"Systems Engineering in der industriellen Praxis", Paderborn, 2013. 

[4]  Smith, P.G., Reinertsen, D., "Developing Products in half the time", John Wiley & 
Sons, Inc., 2nd ed., New York, 1998. 

[5] Smith P.G., "Flexible Product Development- Building Agility for Changing Markets", 
Wiley & Sons, New York, 2007. 

[6] Schuh, G., Eversheim, W., "Release Engineering – An Approach to Control Rising 
System-Complexity", CIRP-Annals, Vol. 53/1, 2004. 

[7] Thörn, C., Sandkuhl, K., "Feature Modelling: Managing Variability in Complex 
Systems", In: Tolk, A., Jain, L.C. (ed.) Complex Systems in Knowledge-based 
Environments, Springer-Verlag, Berlin, 129-161, 2009. 

[8]  International Council On Systems Engineering (INCOSE), "Systems Engineering 
Vision 2020", INCOSE-TP-2004-004-02,Version/Revision: 2.03, September 2007. 

[9] Brown, D.C., "Functional, behavioral and structural Feature", ASME 2003 Design 
Engineering Technical Conferences and Computers and Information in Engineering 
Conference, Chicago, Illinois USA, September 2-6, 2003. 

[10]  Shah, J.J., Mantyla, M., "Parametric and Feature-Based CAD/CAM: Concepts, 
Techniques, and Applications", Jon Wiley & Sons, Inc., 1995. 

[11] Riebisch, M.: "Towards a More Precise Definition of Feature Models". In: Riebisch, 
M., Coplien, J.O., Streitferdt, D. (ed.) Modelling Variability for Object-Oriented 
Product Lines, Norderstedt, 2003. 

[12] Czarnecki, K., Eisenecker, U., "Generative Programming", Addison-Wesley, 
Reading, 2000. 

[13]  Ruhe, G., "Software Release Planning", in Chang, S.K. (Ed.): Handbook of Software 
Engineering and Knowledge Engineering, vol. 3, World Scientific Publishing, 2005. 

[14] Schuh, G., "Produktkomplexität managen", 2nd ed., Carl Hanser Verlag, München, 
2005. 

[15] Kang, K., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, S.A., "Feature-Oriented 
Domain Analysis (FODA) - Feasibility Study", Technical Report CMU/SEI-90-TR-21, 
Carnegie-Mellon University, 1990. 

[16] von der Maßen, T., Bacher, H.V., Dörr, J., Geisberger, E., Houdek, F., MacGregor, J., 
Müller, K., Paech, B., Singh, H., Wußmann, H., "Einsatz von Featuren im Software-
Entwicklungsprozess – Abschlussbericht des GI-Arbeitskreise “Features“", RWTH 
Aachen, Aachener Informatik Berichte, 2005. 

[17] Gilb, T., Maier, M.W., "Managing Priorities: A key to systematic decision making", 
INCOSE, 2005. 

[18] Berander, P., Andrews, A., "Requirements Prioritization", in Aurum, A., Wohlin, C. 
(Ed.) Engineering and managing Software Requirements, Springer-Verlag, Berlin, 
2005. 

[19] Kaiser, L., Dumitrescu, R., Holtmann, J., Meyer, M., "Automatic verification of 
modelling rules in systems engineering for mechatronic systems", Proceedings of the 
ASME 2013 International Design Engineering Technical Conferences and Computers 
and Information in Engineering Conference, 2013. 

[20] Weilkiens, T., "Systems Engineering with SysML/UML: Modelling, Analysis, Design", 
The MK/OMG Press, 2014. 

[21] Pahl, G., Beitz, W., Feldhusen, J.,Grote, K.-H., "Engineering design. A systematic 
approach. Third edition", Springer-Verlag, London, UK, 2007. 


