

Modelling and using product architectures in mechatronic

product development

Hans Peter Lomholt Bruun Niels Henrik Mortensen

M.Sc.M., Ph.D.-student Professor, Ph.D.
DTU Mechanical Engineering DTU Mechanical Engineering

hplb@mek.dtu.dk nhmo@mek.dtu.dk

Abstract
The objective for the paper is to determine the role of a product architecture modelling tool to

support communication and to form the basis for developing and maintaining product

structures for improving development practices of complex products. This paper contains

descriptions, observations, and lessons learned from a case study in which the author tested a

modelling tool to represent a product’s architecture during product development in a larger

Danish company. The reasons leading to the use of the specific model and it’s terminology is

described and illustrated. The paper supports two fundamental theoretical viewpoints;

Theories of technical systems and theories of design processes. In this framing, the paper

addresses the engineering activity of developing products supported by product architecture

representations. The paper includes the description of a visual architecture representation,

experiences by using the architecture representation in a mechatronic development project,

and the scope of using the architecture model as a skeleton for a data structure in a PLM

system. The fundamental idea for planning and modeling holistic architectures is that an

improved understanding of the whole product system, will lead to better decision making.

Moreover, it is discussed how the sometimes intangible product structures within a

architecture can be visually modeled based on the assumption that knowledge about a

product’s architecture has to be tangibly instantiated, in order for people and decision makers

to successfully share it and use it. Keywords: Architectural design process, product models,

top-down synthesis, PLM systems.

Introduction
In the last decades many companies have moved design and manufacturing activities to low

cost countries in order to sustain productivity growth. Due to the global product development

and manufacturing activities, companies experience an extended value chain which is global

and often fragmented and thus creates new challenges that companies must overcome (1). The

challenges of overcoming the complexity of a fragmented vale chain is supported and made

possible by advances in information and communication technology. It is not new that

manufacturing companies use IT-systems to support management of products in their

different life phases including computer aided design, engineering, manufacturing and

product management tools (2). The increasing amount of data from multiple IT-systems can

however often be hard combinable because the large datasets generated by different systems

have tended to remain trapped in their respective systems because of their different format

and information structure. One of the strategies for handling product data from multiple IT-

systems is Product Lifecycle Management (PLM). The idea behind PLM-systems is that

companies can create more value and develop less waste by integrating interdisciplinary data

from multiple systems. PLM can thus be seen as an integrated, information-driven strategy of

managing the whole life cycle of a product starting from generating an idea, concept

Page 1

mailto:hplb@mek.dtu.dk
mailto:hplb@mek.dtu.dk
mailto:nhmo@mek.dtu.dk

description, business analyses, product design and solution architecture, technical

implementation, and product testing, to the entrance to the market, service, maintenance, and

product improvement (3). Product architectures are the mindset behind a product and a

business which in brief describes how products and business processes are built up including

the rules for designing within product projects (4). Product architectures consequently holds

product information handled in PLM-systems. Moreover, architecture descriptions take place

within the context of a project and/or an organisation and are performed throughout the

system’s life cycle. Consequently a product architecture potentially influences processes

throughout the system of products’ life cycle. In other words the conceptualization of a

product family expressed in a product architecture model assists the understanding of the

product system’s essence and key properties pertaining to its behavior, composition and

evolution (5). Whichever format an architecture representation has some basic concepts seems

to be valid for them (6): Displacement – moving the world into a technology; Abbreviation –

simplifying the complexity of the reality; and Remote control – handle the reality through

models in order to intervene. By abbreviation, remote control and displacement it is possible

to focus on a particular part of the product program or product itself. Two-dimensional

inscriptions of the world have been recognized to have a strength in their format because they,

among others, are mobile, scalable, can be reproduced, recombined, and be superimposed (7).

The myriad of information belonging to a product family is however difficult to encapsulate

and manage in a single two-dimensional representation, and detailed information belonging to

the product architecture are preferable handled in IT-systems because models that have a

computer-readable format, allow fast, precise, and safe data transfer, as well as reducing the

effort to replicate and modify information (8). One of the challenges in managing information

in a lifecycle perspective is the aspect of representing product families’ multiple structures

and the enormous amount of information belonging to them. How is the skeleton for the data

structure model developed, ensuring a suitable alignment of technical domains in a lifecycle

perspective? The approach in this study has been to use an architectural product modelling

method to capture the information belonging to different product structures seen from different

technical domains, and to transit the modeled structures into a PLM system in which the

structures have been enriched with detailed information that is not possible to represent in a

two-dimensional product architecture model.

Approach/research strategy
The theoretical basis or the fundamental viewpoint from which this article sets off has its

cornerstone within engineering design science and it has a systems and design perspective on

the topic of architectures and product platforms. In this framing, the article addresses the

engineering challenge of modelling product architectures to support development of

mechatronic product families and how models and their information can be handled in PLM

systems. Mechatronics is in this paper regarded as a multidisciplinary field of engineering,

with an approach aiming at the optimal integration of mechanics, electronics, control theory,

and computer science within product design and manufacturing. Problematisation in this

context considers the concrete elements of modelling and capturing essential information and

thereby supporting development of product families and management of the process in

manufacturing companies. This paper describes a part of an action research study conducted

in a large-sized high-tech company in which the developed architecture model has been

implemented. This article will focus on describing the modelling formalism and the process

for creating and maintaining it, as well discussing if the model helped to an improved

understanding of the whole product system and if it could be measured that it lead to better

decision making.

Page 2

Modeling product architectures to support mechatronic product

development

The approach of developing complex products or entire product families can be supported by

using product architecture models in which high level descriptions improve multidisciplinary

communication and cooperation (9-11). Simple products may have little use for architecture

descriptions but when developing complex products, it is a prerequisite to have a

superimposed view on technical domains in order to foresee performance in the products’

meetings with its life phases. The product architecture model presented in the following is

named The Interface Diagram (IFD). The IFD has its basis in the Generic organ diagram

presented in the work of Ulf Harlou (9). The model represents a product architecture

comprehended as a structural characteristic of a system, mostly combining an aspect of

mapping between technical domains, and mainly a mapping between function and physical

structure. The model puts emphasise on managing technical interfaces between entities in the

model, hence the chosen name of the modelling tool. Moreover the model puts emphasize on

handling a family of products seen in different structural viewpoints. The main viewpoint is a

system perspective i.e. the perspective that deals with the product’s main functions or its

related lifecycle. The second viewpoint is a modular viewpoint in which systems are split and

components are physically joined and encapsulated into modules with simple interfaces.

Modelling formalism
The following section describes the modelling formalism, the process for creating and

maintaining the modeled architecture, and elaborates on the IFD as a conceptual system

model in order to allow intervention. Because of secrecy issues for the company involved, the

formalism is illustrated and described by using an example of an IFD conducted for a product

family of Bobcats. The Bobcat is a mobile power loader that is a small, self-propelled utility

vehicles used for a large variety of purposes such as heavy duty agricultural earth moving,

construction site utility and integrity support of public and private infrastructure. The IFD is

modeled by means of blocks and lines in the software program Microsoft Visio. The program

is suited for object oriented modelling and structuring different perspectives of architectures

in layers. The interface diagram is normally printed on large blue prints in order to get the

overview of the architecture it represents. Figure 1 is a symbolic representation of an IFD.

FIGURE 1 SYMBOLIC REPRESENTATION OF A GENERIC INTERFACE DIAGRAM

Page 3

The diagram follows the approach of modelling architectures by use of block diagrams. The

main elements of the diagram formalism are functional objects denoted Interface components

(IF-component). The purpose of the IF-components is to decompose the systems and modules

into smaller functional building blocks. IF-components can have different characteristics and

are thus modeled in different ways, see Figure 2. An existing IF-component represents a

generic assembly or part in the architecture and is symbolized by a white block. An optional

assembly or part is symbolized by a grey block. A future assembly or part which has to be

taken into consideration in the architecture but has not been developed yet has a dotted line

around a white block. Finally variety of assemblies or parts is modeled by placing blocks on

top of each other with a little offset. The representation shows that the specific IF-component

has at least two variants. Each IF-component belongs to a product system. To avoid confusion,

systems and their interaction must be clearly defined. This is done by choosing the relevant

interaction as a basis for determining the system boundary. There is no fixed list of systems

to be included in the development. Systems can be modeled and thereby control important

properties of the final product. Each block has a designation for its system relationship;

primary or secondary. A primary system means that the system designs the underlying

parts and holds the responsibility for the functionality, while a secondary system has

requirements to the design. An example could be that a cooling unit is designed by the team

responsible for cooling and conditioning, while the system responsible for the engine has

requirements to the cooling performance they need for their engine design.

FIGURE 2 FOUR REPRESENTATIONS OF A IF COMPONENT

Modules are modeled by arranging IF-components inside boxes with a thick black boundary

and rounded corners; see Figure 1. All modules are assemblies of physically joined

components forming one bill of material (with possible multiple levels). Modules can contain

smaller modules, but they do not overlap as it is clearly defined to which modules any

element in a product belongs. Modules are in this context suitable for splitting responsibility

in the product development process. The structure of the interface diagram appears as the

relations are added to the diagram. The interfaces between IF-components are drawn with

lines which represents a relation. An interface among two IF-components represents a physical

relation, e.g. physical connection, energy transportation, information flow or flow of material.

The purpose of working with interfaces is to ensure responsibility for the components

interaction and to ensure that components are interchangeable, when relevant. In a product

modelling context, the interface has to belong to a common structure, or some sort of generic

placeholder, in order for the interfaces to be inherited to the involved elements. An interface

is thus a relation between two IF-components and in every set of IF components it is defined

which is the master and the slave. The dot at the end of the line indicates the responsible

of the interface. This enables a responsible for an IF-component to monitor whether he owns

the right to change or modify the related interface. In a modularisation context all interfaces

between different modules and the outer environment should be carefully specified in order

to complete the module. As described by (9) product families have a class of interfaces named

generic interfaces. The generic interface are those that enable

Page 4

modules to be reused and/or substituted in order to work together and these have to be stable

over generations in order to enable reuse across product families and generations of product

families. Optional interfaces can be modeled on the diagram to show affected relations between

entities or systems if the interface is established. Figure 3 shows the IFD for the Bobcat

product family with explanations of the overall layout and content. In order for the reader

to quickly understand the structure of the product it is suitable to model the diagram so the

layout is established as a cross section of the actual product. In that way the physical

layout of the product is possible to recognize in the diagram.

FIGURE 3 REPRESENATION OF A BOBCAT AND ITS INTERFACE DIAGRAM

The diagram can be read following the interfaces. For products that process or transforms

objects this gives a logical reading direction, for other products it is up to the reader to find a

suitable flow in the model.

Bridging from system to modular engineering

There exists many ways or views to read and structure a product or a family of products.

According to (12):”The structure of a product is the way in which its elements are

interrelated in a system, based on the actual viewpoint”. Consequently, a product has multiple

structures depending on the viewpoint. A major strength of the IFD is its ability to handle

the development of a product or product family in different lifecycle perspectives forming

different structures. For highly complex products with myriads of systems, groups of

specialized engineers develop entire systems. Systems are however seldom the most

appropriate way of manufacturing the product and combining system after system.

Modularisation in respect to aspects of assembly, transportation, sourcing, serviceability,

changeability and other drivers for modularisation are thus desirable to handle in the

architecture model. Modularisation creates clear structures by breaking down huge systems to

manageable units, encapsulating details in larger units. Encapsulation in larger units allows

descriptions to move up one level of abstraction. This reduces perceived complexity because

the level of abstraction i.e. the level of encapsulation of functional units in larger chunks,

creates an simpler interface to other units. An example from the Bobcat is used to illustrate

this. Figure 4 shows the architecture of two of the systems in the Bobcat; the hydraulic system

and the drive train system. The two systems are physically allocated to different sections of

the Bobcat connected by interfaces as hydraulic hoses, electrical wires, transmissions belts

etc.
Page 5

FIGURE 4 ON THE LEFT; SYSTEM STRUCTURE OF A BOBCAT SHOWING ENTITIES BELONING TO SYSTEMS

AND THE RELATIONS BETWEEN THEM. ON THE RIGHT; MODULE STRUCTURE IN A BOBCAT SHOWING

ENTITIES BELONING TO MODULES AND RELATIONS BETWEEN SYSTEMS AND MODULES

Modules can consist of elements belonging to different systems i.e. developed by different

system teams. Figure 4 shows the architecture in which the two systems are split out in three

modules: Baseframe module, engine module, and hydraulic module. It is therefore important

both to integrate systems in modules, but also to handle interfaces created along the module

boundaries splitting systems. When monitoring the IFD in Visio it is possible to turn on layers

containing specific systems and the interfaces belonging to it, and also monitoring interfaces

to other systems. Moreover it is possible to see entities belonging to modules with the same

respect to interfaces. Figure 5 illustrates this way of using the IFD to hold information from

multiple product structures. The functionality of using the structures from the IFD in a PLM-

system makes it furthermore possible to link data from e.g. CAD to the structures. Moreover

CAD structures can be monitored in a system or module context rearranging the components

according to the chosen viewpoint.

FIGURE 5 THE IFD HANDLES MULTIPLE PRODUCT STRUCTURES

Experiences from implementation and use
The interface diagram is a dynamic tool which is updated and refined during the project life

cycle. The technique for modelling the architecture is based on interviewing the persons with

the insight to model systems in their totality. It is seldom that a single person in a company

has the needed insight to draw the diagram. Therefore several domain experts have to be

involved in giving input to the diagram. Experience from the case company showed that it

took several months to create a meaningful diagram. The consumed time for establishing an

IFD is however depended on the complexity of the products i.e. number of different systems,

and number of necessary IF-components to decompose them. The process of establishing and

maintaining an IFD for a product family is thus an iterative process. The diagram should

provide all systems with the holistic overview of the products’ present status and not least of

all, to enhance the parallelism among system development activities. The interface diagram

Page 6

must thus be reviewed in an established periodic change management process. When using

the interface diagram as a tool for modularisation, it is experienced that early modularisation

gives more freedom to explore alternative concepts. The interface diagram enables a proactive

approach for developing and evaluating alternative modular architectural concepts for the

family of products it represents, because boundaries around modules can be evaluated when

the freedom to design is high and the product structure is still to be fixed. The IFD formed

the basis for documenting the architecture and for managing the responsibility of systems and

modules and their interfaces. The IFD has in that way proven its worth for creating parallelism

of development activities as well as distributing responsibilities for them. Moreover the

model supported detailed development of systems and especially the integration of systems.

The functionality of visualizing the product family’s system and module structures in one

superimposed view was recognized by the system and module managers as a way of running

development activities in a more parallel than what had been possible in previous projects.

One of the most important functionalities of the IFD is however that the modeled product

structures can be loaded directly into the companies PLM system and form the skeleton for

the information data structures. This created a more logical structuring of the information

belonging to the products, which in the case company lead to more easily navigation in the

IT-system and consequently leading to optimisation of the information management

processes.

Conclusion
Two major ways of modelling product architectures exists: Computer modelling efforts with

an intention to build software computer models, such as those supported by PLM systems or

configuration systems and phenomenon models describing the concept of product architectures

from a relatively theoretical standpoint (13). The product architecture modelling method

described in this article belongs to the group of phenomenon models, with a format that

enables its information to transfer to a computer model. The method for modelling

product architectures in block diagrams mapping the functional entities of a product and

allocation of structure to functions is not new. There is nevertheless still a need in industry for

modelling architectures that represents different types of information and data elements in a

way that address relations to the product family’s life phase systems. The experience from

implementation of the IFD is that an optimum of a visual representation provides the necessary

details and, yet, still maintains the overview in order to support and improve decision-

making. The IFD supports the balance between creating overview and operational handling

of architectures with the higher level of information they impose. Choosing the right level of

decomposing systems and interfaces in the IFD is consequently of great importance for the

productivity of the tool. There is no clear answer to what the appropriate decomposition

level in the IFD is, given that it is contextual to the product family it represents depended on

number of variants and technical complexity. The model deals with transformation of the

product over time and it offers a fundamental approach for supporting proactive modular

architecture development by modelling the relational aspects of modules. The product

structures established in the architecture could be loaded directly into a PLM- system which

enabled to manage product information on a system, module and interface level during

development. The most important reason for handling the architecture model in a PLM-

system is that it enables the possibility of managing the large amount of design information

belonging to a mechatronic product or entire product family. The fundamental idea for

using the architecture model was that an improved understanding of the whole product

system, would lead to better decision making. The experience by using the model was that it

acts as a vehicle for communication between stakeholders, which enabled to foresee

Page 7

implications of designs and especially design changes. An area of focus in future work is the

possibility of using a process structure view point in the IFD in order for enhancing the fit

between design and production phases. Moreover emphasise in the ongoing research is on

developing the IFD-formalism to support the evaluation of the optimal module boundaries.

References

(1) Manyika J, et. al. Big data: The next frontier for innovation, competition, and productivity.

2011.

(2) Stark J. Global product: Strategy, product lifecycle management and the billion customer

question. : Springer Verlag; 2007.

(3) Sääksvuori A, Immonen A. Product lifecycle management. : Springer Verlag; 2008.

(4) Meyer MH, Lehnerd AP. The ¤power of product platforms building value and cost

leadership. New York: The Free Press; 1997.

(5) IEEE.

ISO/IEC 42010 Systems and software engineering — Architecture description. 2011.

(6) Cooper R. Formal organization as representation: remote control, displacement and

abbreviation. Rethinking Organization: new directions in organization theory and

analysis.London: Sage 1992:254–72.

(7) Latour B. Visualization and cognition. Knowledge and society 1986;6:1-40.

(8) Bergsjö D, Catic A, Malmqvist J. Towards Integrated Modelling of Product Lifecycle

Management Information and Processes. Proceedings of NordDesign 2008 2008:253-264.

(9) Harlou U. Developing product families based on architectures contribution to a theory of

product families. Lyngby: Department of Mechanical Engineering, Technical University of

Denmark; 2006.

(10) Martin MVV. Design for variety: developing standardized and modularized product

platform architectures. Research in engineering design 2002;13(4):213-235.

(11) Ulrich K. The role of product architecture in the manufacturing firm. Research Policy

1995;24(3):419-440.

(12) Andreasen MM, Hansen CT, Mortensen NH. The Structuring of Products and Product

Programmes. 1996.

(13) Pedersen R. Product Platform Modeling. Department of Mechanical Engineering,

Technical University of Denmark, 2009.

Page 8

