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Abstract 

A wide variety of expert competencies, transcending traditional disciplines, are needed to 
foresee and evaluate the impact of decisions in the conceptual phase of engineering design. 
Where this previously was a trade-off regarding design and development of the pure physical 
artefact it is now a complex ambiguity game involving all disciplines touching a solution during 
its lifecycle, due to the movement towards integrated product-service solutions. Gathering the 
involved, normally diverse, group of stakeholders in a collaborative setting for design 
exploration exercises, sharing knowledge and values, is believed to augment decision making 
ability in early design. A model-driven environment for collaborative decision making is 
proposed as a solution that potentially may help harvesting these benefits. In this environment 
stakeholders interact with each other using digital models, model generated information, 
simulation data and product data collected in the field in order to evaluate design proposals by 
playing out potential usage scenarios and investigating cause and effect relationships. Initial 
work on conceptualizing, developing, and testing such an environment is done through a pilot 
study based on two industrial use cases. The development process iteratively unveils demands 
and constraints related to the environment. These discoveries go hand in hand with developing 
an infrastructure regarding both hardware and software as well as required human resources in 
a functional environment. Fully realizing the envisioned model-driven environment for 
collaborative decision making entails new ways of working requiring new knowledge as well 
as technological innovation. In that aspect, environment infrastructure and usage are elaborated 
on and direction for further research and development is indicated. 
 
Keywords: Model-driven design; Conceptual design; Design exploration; Visualization; 
Multi-stakeholder; Decision making; Digitalisation 

1 Introduction 

On today’s market even complex products are becoming a commodity. Staying competitive 
necessitates differentiation other than traditional approaches like superior quality or more 
efficient manufacturing of the product itself. To face this challenge many companies adopt a 
strategy where customer perceived value is in focus, often resulting in products being bundled 
with service offerings, so-called product-service systems (PSS) (Baines et al., 2007). PSS-like 
business approaches focus on co-developing product and service offerings based on product 
life extension (often through sharing), and therefore dematerialization of the physical artefacts 
(Bey & Mcaloone, 2006). The emergence of complex PSS pinpoints the need for multi-domain 



evaluations in every aspect of a products value life. The analysis of such systems, often 
consisting of many disparate and potentially complicated subsystems, in one integrated model 
environment is challenging due to lack of resources, knowledge and tools. Current practice is 
rather to evaluate the sub-systems using stand-alone, domain specific, models. Engineering 
teams are assigned responsibility for different subsystems. These teams (stakeholders in the 
system design) are then, without proper steering and coordination on the system level, likely to 
strive to optimize the subsystem they are responsible for. However, optimal solutions of 
subsystems are commonly competitive, i.e. optimizing a certain subsystem will likely constrain 
another subsystem resulting in a suboptimal system level solution. To avoid this, trade-offs on 
system and subsystem levels as well as conflicting and competing design objectives must be 
identified and resolved. There is a need for processes, methods and tools, i.e. decision support 
systems (DSS), to support this endeavour. A DSS may be defined as an interactive computer 
based system, which help decision makers visualize and utilize data and models to solve 
unstructured problems (Sprague, 1980). DSS’s are categorized by identifying the main 
architectural component that provides the functionality for supporting decision making (Power, 
2002). DSS’s based on quantitative models and simulations are referred to as model-driven 
DSS.  
One success factor in engineering design is the ability to make effective and risk-managed 
decisions in a timely manner. In an era of complex PSS, decision makers are rarely experts on 
all knowledge domains needed (multi-disciplinary engineering skills, manufacturing, 
procurement, marketing, sales, maintenance etc) to navigate through the often vast design 
space. Hence, the quality of design decisions is likely improved by encompassing a broader 
representation of knowledge and values in the process. A DSS for conceptual design should, 
therefore, be designed for collaborative decision making, encompassing “Human-in-The-Loop” 
(HiTL) to capture and reflects preferences of the stakeholder group. HiTL simulation is a 
modelling framework that requires human interaction (Rothrock & Narayanan, 2011). This 
allows stakeholders to “shop for a solution” (Balling, 1999). This is important as it increases 
design freedom considering that formulating design targets and wishes a priori is 
problematic/dangerous as people in many cases do not really know what they want until they 
see some potential solution to their proposed problem and are able to get some insight enabling 
comparison of benefits and drawbacks of competing conceptual solutions. Furthermore, 
involving the stakeholder group is also likely to improve trust and acceptance of subsequent 
decisions. Collaborative decision making, ensuring stakeholder involvement in the decision 
process, has been shown valuable in other areas. One example is participatory integrated 
assessment deployed in environmental analysis, see for example Salter et al. (2010). 
This research presents an initial attempt to develop such a DSS realized as a model-driven 
environment for collaborative decision making focusing on early phase engineering design of 
complex PSS. This type of decision environment has been successfully deployed within other 
scientific areas, one example is the decision theatre at Arizona State University, see for example 
White et al. (2010). The need for such environments in engineering design and initial research 
towards that has been presented by Rhodes & Ross (2016). 
The following chapters present an initial attempt to conceptualize a model-driven environment 
for collaborative decision making. A procedure based on value-driven design exploration is 
presented in the following chapter. This is followed by generalized procedural descriptions 
containing descriptions of the main building blocks of the proposed environment. The 
generalized procedural descriptions are an abstraction based on the implementation of two 
industrial use cases, see Panarotto et al. (2017a, 2017b) and Bertoni et al. (2018) respectively. 



2 Value-driven design exploration 

The design process is essentially about generating products and/or services that satisfy needs in 
the best way within available means. Unfortunately, these two notions are often both ill-defined 
and conflicting. Needs are not given in a project fuzzy front end: unveiling them becomes then 
an integral part of the design process. The notion of ‘available means’ is represented by design 
constraints, which typically limit the designers’ ability to achieve full satisfaction of the initial 
needs. Some of these constraints originate from the physical world, some are related to the 
designers’ perceptions - and interpretation - of the design situation, others are implicit in the 
representations and processes utilized (Gero, 1994). Designers must then bounce back and forth 
between problem setting and solving, exploring the design space since an early phase through 
experimentation to unveil behaviours and constraints. 
In modern engineering, design experimentation is seldom a manual process, but rather a process 
exploiting a number of computerised virtual models. Model-based experimentation 
(simulation) is an effective means to enabling extensive exploration, so to learn faster (by 
performing more and earlier iterations) about the characteristics of the best possible design (see: 
Thomke & Fujimoto, 2000). Systems Engineering (SE) research has stressed the importance of 
a specific model type to frontload engineering design activities with: the value model (Collopy 
and Hollingsworth, 2011). This model is expressed as a single objective function that aims at 
measuring the “goodness” of the design. The resulting value score, expressed in monetary units 
becomes then the key decision making criterion for the engineering team: the higher is the 
value, the more successful will the solution be. 

 
Figure 1. Value-driven exploration scheme. 

This Value Driven Design (VDD) approach is explained as a process (figure 1). Once defined, 
the design space for the specified problem is explored by experimenting with feasible 
conceptual designs. Functional and cost aspects are assessed at each iteration, unveiling the 
performance and resource space respectively. The value model is fed with the output of these 
models to render a value score for the design configuration under analysis. This series of steps 
is repeated until a satisfactory solution is found. Such a solution might imply identification of 
areas of significant improvement, new products or even new business models. 

3 The model-driven decision arena: Implementation 

The envisioned decision arena is a physical location where design decision makers gather to 
share ideas, knowledge and values to evaluate conceptual designs. Using models, model 
generated data and data from the field, different conceptual solutions to the posed problem as 
well as different operational scenarios may be assessed. This transmission from traditional 
deterministic simulation towards a more probabilistic, evaluating different operational 
scenarios, is likely to provide more robust solutions. In the arena, the stakeholder group interact 
with this data using interactive, immersive, visualisations. The group play out different 
scenarios by manipulating models through graphical user interfaces, enabling also non-expert 
to actively participate. Another foreseen benefit is that the interaction within the stakeholder 



group will start discussions that continues beyond the design exploration session in the arena. 
The core of the envisioned decision arena is a hybrid model environment with a multi-level 
model hierarchy. This hybrid environment encompasses, for example, discrete event 
simulations, finite element simulations, differential equations, algebraic equations and 
mathematical logic. The main conceptual components of the environment are schematically 
shown in figure 2. The MDDA server, implemented in Microsoft Excel, controls interaction, 
data transfer and execution of all modules in the environment. The functionality of each module 
is based on sub–modules implemented in different software (clients). The model framework is 
designed with well-defined interfaces between the server/module/client. This allows models of 
different fidelity to be used in different stages of a project. Furthermore, this is important to 
easily change between different projects. 

 
Figure 2. Framework for implemented multi-model structure. 

Input to the MDDA server is a description of a conceptual design containing information about 
system hierarchy, geometrical data, contextual data, envisioned operation scenario, etcetera 
(define design problem stage of figure 3). The concept description is, to a large extent, digitally 
stored in a CAD model. This CAD model is feature based and parametric, i.e. it is defined by 
dimensional, geometric and algebraic constraints. Generating and through computational 
methods evaluate and compare all feasible conceptual solutions in the current design space is 
rarely a practical solution. Furthermore, in an extreme case, if an optimal solution was stumbled 
upon early on in an exploration endeavour the ability to recognize that is lacking unless 
comparative studies are conducted. The MDDA server implements an automated Design-of-
Experiment (DOE) tool for the exploration of the design space. DOE is a technique for choosing 
a limited set of data samples in the design space with the goal of maximizing the amount of 
information produced (Giunta et al., 2003). 
When the CAD model is created, design parameters intended to be selectable as design 
variables in the DOE are defined. After importing design data from the CAD model, a list 
containing all selectable variables are automatically generated in a GUI and the user may define 
which of them to include in the DOE study. The next step is to define a usage scenario and 
choose the parameters to be varied in the study. After that all variables and their bounds are set, 
an appropriate sampling technique to generate the experimental plan is selected and the 
experiment is executed. When the experiment is executed, associated attributes for all concept 
variants in the DOE generated experimental plan are predicted and stored in a database. 



Relevant data is then retrieved from the database and analysed. Finally, results are presented. 
Simulation models need near to real-time performance regarding execution time to enable 
simulation of new scenarios during a decision meeting. In most cases, this is not attainable. If 
so, thorough design space exploration needs to be performed before hand, generating and saving 
design data that at a later point can be scrutinised in a collaborative manner. The modules used 
in the described workflow is presented in the following sections. 
 

 
Figure 3. Schematic workflow of MDDA. 

3.1 Functional model 

Exploration of the performance space requires reliable information/data regarding design 
attributes, for example, structural behaviour and physical performance of a proposed design. 
Functional as well as non-functional attributes may be derived directly from the CAD model. 
Functional attributes might, for example, be mass of a component or system, used either directly 
or as a proxy to perform a function. Non-functional attributes might, for example, be estimates 
of the CO2 footprint caused by manufacturing the proposed design assessed based on material 
selections and assumed generic manufacturing flows for the components and sub-systems. 
Other performance attributes such as for example energy consumption, are evaluated through 
engineering models. These models might take the form of differential equations, algebraic 
equations, or mathematical logic. In the case where attributes are derived from engineering 
models, most data needed to populate those models, such as geometric and technical 
descriptions of the major sub-systems and components, are attained from the CAD model of 
the studied design concept. 

  
Figure 4. Example of functional model set-up. 

Figure 4 shows an example of functional model set-up. The functional model module (refer to 
figure 2) is implemented in Microsoft Excel. The module controls and interacts with a number 
of other software (CAD, FEM, numerical computing platform etcetera), here referred to as 
clients, running specific models needed to assess different aspects of the studied concept. The 
functional model module is controlled by the MDDA server as previously described. 



3.2 Cost model 

Literature (e.g., Fabrycky and Blanchard, 1991) highlights that cost must be an active rather 
than a resultant factor throughout the system design process. The cost analysis module aims at 
quantifying the economic gains (and the losses) of a new concept compared to a baseline design. 
The analysis is based on a Total Cost of Ownership (TCO) equation (1), which distinguishes 
two main cost families - Ownership (OW) costs and Operating (OP) costs. The main cost types 
upon which the TCO model in the Decision Arena is built are further described in Table 1. 
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Table 1: Main cost items in the TCO model. 

DPc: Depreciation cost Capitalization of the acquisition cost over the lifecycle. 
FINc: Financial cost E.g., interest on loans and taxation reduction. 
OH: Overheads E.g., training, recruitment and insurance costs. 
DCc: Decommissioning cost For the hardware, only if it is not sold second-hand. 
RV: Resale value For the hardware, only if it is sold on the second-hand market. 
Ec: Energy cost Proportional to the energy used during the entire lifecycle. 
LC: Labour cost Proportional to the human labour needed to operate the system. 
Sc: Setup cost E.g., preparation and inspection of the hardware. 
Mc: Maintenance cost E.g., labour, consumables and downtime/opportunity cost.  
Rc: Repair cost E.g., labour, spare parts and downtime/opportunity cost.  
Lc:  Logistic cost E.g., transportation, storage and other costs.  
P&F Penalties and fees E.g., quality-, delay-, accident- and environmental-related costs  

 
Populating the equation requires the development and executions of a set of sub-models for 
performance analysis. Two main models in the decision arena are the lifecycle performance 
model and the manufacturing model. The first predicts the accumulated usage cost during the 
lifetime of the hardware as a function of different operational scenarios. Value lifetime refers 
to the time whilst a product is disposed due to by the customer perceived inferior performance, 
functionality or appearance compared to alternative products available on the market (Umeda 
et al., 2007). Energy consumption, needed man-hours for conducting tasks according to the 
given operational scenarios, etc. are all inputs to the lifecycle performance model. This also 
calculates maintenance costs, which may depend on selected design features, components and 
assembly structures as well as on the operational scenario. 
The manufacturing model is a key component to calculate acquisition and depreciation cost.  
The model makes use of geometrical data from CAD, such as for example, number of 
components in a system (affecting assembly cost), estimated mass (affecting manoeuvrability), 
component size, driving for example machining time based on material thicknesses, 
circumferential length etcetera. Engineering models linked to the functional module might also 
be used. An example of such a model might be a weld analysis, where necessary weld throat 
thickness is estimated considering required component life, geometric description, and load 
case. Predicted weld throat thickness affects time required for the weld operation and possibly 
also feasible welding techniques, both having a direct effect on manufacturing cost. 

3.3 Value model 

Focusing only on costs drivers reduction leads to false perceptions of ‘value’ and does not 
enable a sound judgement to be made during the design of an engineering product (Price et al., 



2012). Value extends further beyond cost, to encompass the evaluation of ‘ilities’ proposed by 
McManus et al. (2007), and more intangible factors, such as brand acknowledgement, aesthetics 
or sustainability impact (Steiner and Harmor, 2009). For instance, while increasing the engine 
power of a vehicle leads to better performances and reduced operational cost, it also results in 
increased production of CO2, reducing its appeal among potential buyers. 
The decision arena proposes two complementary approaches to capture value aspects beyond 
cost and technical performances. It is possible, on one end, to quantify all aspects of value in 
monetary terms, so that they can be more easily traded-off with more traditional requirements. 
Monetary units are convenient, practical and universally understood metrics for value, and are 
beneficial in the design process to stress the potential success of investments (Kipouros and 
Isaksson, 2014). This quantification process in the decision arena is driven by the 
implementation of Net Present Value (NPV) and Surplus Value (SV) from the VDD literature 
(see: Price et al., 2012). Quantification presents several challenges, mostly in terms of data 
availability and trustworthiness of the monetary models. A complementary approach is that of 
adopting a more qualitative approach, with the aim of assessing the “goodness” of a design for 
a given set of value-related criteria. The introduction of a Multi Criteria Decision Analysis 
(MCDA) module is then seen as a pragmatic approach to account for value aspects in the 
decision process which are hard to quantify with precision in economic terms (and that might 
mislead decision makers). 
The value criteria for the MCDA exercise are derived from a framework that considers customer 
and provider perspectives separately. The definition of value criteria is guided by the equation 
proposed by Lindstedt and Burenius (2006), which defines customer value in the broad 
perspective of ‘gains’ vs. ‘pains’, and describes it in terms of ‘main’, ‘additional’, ‘supporting’ 
and ‘unwanted’ functions. The Feasibility-Viability-Desirability (FVD) from Design Thinking 
research (Leavy, 2010) and the Triple Bottom Line (TBL) model (see: Willard, 2012) help in 
detailing the nature of such gains and pains. Analytical Hierarchical Process (AHP) is used as 
principal method to rank-weight the value criteria. TOPSIS, VIKOR, ELECTRE and 
PROMETHEUS are main approaches in the engineering toolbox to qualitatively assess the 
value of solutions in an early stage. The decision about what method shall support the MCDA 
exercise is driven by considerations on team size, experience with MCDA and information 
availability. More advanced methods such as Concept Design Analysis (CODA) (Eres et al., 
2014, Bertoni et al. 2018) are applied when the team needs to better capture the rationale behind 
the assessment, and to document richer lessons learned that can be exploited in future projects. 

3.4 Data analysis and visualisation 

Design exploration activities may generate an abundance of data. The generated data contains 
a complex hierarchy of attributes, ranging from the top level attribute of value down to basic 
functional attributes of the concept design. To understand how attributes on different levels is 
affected by system/sub-system/components or on a more detailed level relates to component 
features is imperative to explore cause and effect relationships. Such analysis is based on 
"variation" among and between data samples. A general method for this is analysis of variance 
(ANOVA), see for example (Myers et al., 2016). Such methods allow to predict the trends in 
the simulated response data, i.e. determine the relationship between design variables (factors) 
affecting a process and the output (response) of the studied process. 
However even if the outcome of the data analysis stage contains necessary information to 
support sought decision, it is still hard for a diverse group of stakeholders to navigate through 
and make sense of the generated data. A key enabler of exploration and negotiation in a multi-
stakeholder decision scenario are constructs and practices aiding interaction with model 
generated data. A major challenge is the analysis of very large sets of generated data. The 



analysis process of this data, potentially incomplete and inconsistent, requires human judgment 
to make the best possible evaluation in the face of high uncertainty. Visualisation that provide 
capability to contrast and compare results are therefore crucial. 
Among examples of deployed, commonly available, visualisation techniques are scatter plots, 
parallel coordinates, radar charts and histogram plots. Other visualization constructs that 
facilitates negotiation in a multi-stakeholder decision scenario are tailor made for the 
environment, such as the approach adopted by Bertoni et al. (2013), who develop a lifecycle 
value representation approach connecting qualitative value scores (based on a 9-point scoring 
system) to the actual CAD representation of the product under analysis. Value scores are 
mapped to a colour scale to highlight areas that are negatively or positively affected by new 
designs. 

3.5 Model maturity and impact 

For a group of stakeholders involved in a decision scenario, a very important issue is trust, i.e. 
trust in models and model generated data in order to feel comfortable making a decision. 
Uncertainty, the absence of certainty, or knowledge – about unknowns, in decision scenarios 
are normally high and the ability to understand limitations of used models is crucial. Due to the 
abstract nature of models, which becomes even more pronounced in a hybrid multi-model 
environment, it is therefore important to inform decision makers of maturity and impact of 
models used in a specific decision scenario. 
Model maturity level (MML) depicts a distance, or compromise, between the actual (i.e., 
current value) and ideal certainty level to be expected from the model. Similarly, as with other 
maturity constructs in literature, MML is envisioned to follow a levels-scale, from low to high 
maturity. Impact is included to add an additional dimension to assessing uncertainty. The idea 
is to have a dimension that represents a spread of different modelling situations and contexts, 
where two different contexts might render the same model sufficient or insufficient. For 
instance, a high impact-level means that the aspect that is modelled is critical for the product, 
and thus the model needs to produce results with high chance of certainty. Stakeholders are 
then advised to approach with caution. On the other hand, a low-level means that the potential 
impact is negligible and thus there is not a need for further scrutiny or improved development 
in relation to this topic. Previous research (Johansson et al., 2017) presents an attempt to 
visualise and bundle meta information about model maturity and impact in a specific decision 
scenario with the model. 

4 Conclusions and future work 

The paper presents initial findings related to the development of a model-driven environment 
for collaborative decision making in early engineering design. The MDDA necessitates new 
ways of working and requires new knowledge as well as technological innovation. A 
generalized usage description of the MDDA is presented, containing needed functionality 
mainly regarding software but to some extent also hardware. Presented procedures are a 
generalised abstraction based on the implementation of two industrial use cases. 
Importantly, the main ability of the MDDA is not only to facilitate decision makers in exploring 
the design space using models, but also to support negotiation in the cross functional team, so 
to facilitate the sharing of tacit, contextual knowledge about the product/service being designed. 
Due to the complex nature of design problems combined with the vast amount of data generated 
in proposed design exploration scheme, data analysis and visualization are key success factors 
in realizing the MDDA. In this spirit, the paper presents and discusses visualization constructs 
that facilitates negotiation in a multi-stakeholder decision scenario. The emerging research field 
of visual analytics holds promise to help in this aspect. 



Future research work will focus on issues related to validating both the physical environment 
and the proposed decision making process. A major activity concerns testing decision scenarios 
in the proposed environment with practitioners. Efforts will also be put into further 
standardising model interfaces and simulation procedures in order to attain a versatile 
environment able to encompass new scenarios and design problems with limited efforts. 
Another recognised challenge in operating the MDDA is to populate models in early stages of 
engineering design due lack of trustworthy data. This might be mitigated by advances in data 
mining and related research fields. An identified hinder in developing the MDDA is the general 
lack of interoperability of simulation software. Integration is in many cases realized through in-
house developed code.  
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