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Abstract: The use of Data-Driven Design (DDD) plays a pivotal role in transforming the design and development
processes within various industries. The purposeful use of data can extract valuable insights to foster innovation. This
paper explores the current application of data management throughout the product lifecycle, focusing on identifying
underutilized data and missed innovation opportunities. Our research focuses on the challenges in incorporating data-
driven applications in multidisciplinary development processes, aiming to assist companies in effectively navigating,
choosing, and implementing data-driven strategies within product development. Through a systematic literature review
and industry insights, we present twelve data-driven applications, classified by lifecycle phases and linked with relevant
data sources. Based on this, a guiding framework utilizing data science and Al is proposed, enhancing data
empowerment and efficiency in industrial practices. Finally, the findings are validated through a case study, providing
a structured path from theoretical exploration to practical implementation of DDD.
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1 Introduction and problem clarification

In the current industrial landscape, the trend of digitalization signifies a transition towards more data and its subsequent
processing. This is amplified by significant advances in information and communication technologies (ICTs), which
enhance sensor capabilities while also reducing costs, thereby fostering increased utilization in products (Liu et al., 2018;
Zheng et al., 2021). The phenomenon has led to a rapid growth in the amount of data available within companies,
prompting a need for effective management and utilization (Briard et al. 2021). The concept of Data-Driven Design (DDD)
emerges as a pivotal strategy in leveraging this data to refine the design and development processes, extracting valuable
insights to facilitate innovation (Kim et al., 2017).

In addition, the rise of new technologies, notably artificial intelligence (Al), presents unprecedented opportunities for
automated data processing and knowledge acquisition, further emphasizing the necessity of adept data management
(Meyer et al. 2022; Langley et al. 2022). Despite the evident potential and increasing adoption of data-centric approaches
in various industries, a significant gap persists. Companies, particularly within engineering domains, struggle with
harnessing the full value of their data, mainly due to an absence of a coherent digitalization strategy or a clear
understanding of data-driven application use cases (Paliyenko et al., 2022; Dausch et al., 2023; Miiller et al., 2023).

This deficiency is not merely operational but fundamental, affecting the core structures of data processing in companies.
There is an evident disconnect in the end-to-end chain of data handling across the product lifecycle, leading to
underutilized data and underexploited areas of innovation. Despite industry acknowledging the benefits that data can offer
for both internal and external processes, such as in the realms of Industry 4.0, Product Service Systems (PSS), and Cyber-
Physical Systems (CPS), a structured approach to integrating data-driven applications is still lacking. The challenges
extend beyond mere data acquisition., rather, the underutilization and inefficient handling of data are to be observed,
particularly in multidisciplinary processes (Paliyenko et al. 2023; Huikolla et al. 2022; Liu et al. 2018). This underscores
the necessity of structured frameworks that do not only assist companies in identifying and implementing relevant data
use cases but also in aligning these with their respective product lifecycles, thereby maximizing efficiency and innovation
(Opazo-Baséz et al., 2023; Ganz et al., 2021).

Aligning data-driven applications along the Product Lifecycle (PLC) may significantly enhance developmental and
operational efficiency, as well as foster innovation in internal and external value creation. Additionally, the creation of a
guiding framework for structuring data-driven applications could support decision-making in product development,
delineating necessary actions, and data processing requirements. Furthermore, the implementation of a checklist or
questionnaire for self-assessment could streamline the initiation of data-driven use cases, enabling organizations to better
identify and leverage potential applications. Thus, the research questions (RQ) posed are: RQ1: How can data-driven
applications be structured to unlock untapped potential in product development? RQ2: What approaches can be taken for
the practical initiation of data-driven use cases in companies?

The overarching subjective of this research is to assist companies in navigating, selecting, and implementing data-driven
processes within product development. This entails providing comprehensive support in aligning data-driven applications
with phases of the product lifecycle, considering the current state of the art, and understanding the implications and
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opportunities presented by Al in data utilization. Through addressing these focal areas, the study aims to bridge the gap
between theoretical data capabilities and practical application, thereby fostering a more efficient, innovative, and data-
empowered industrial environment.

2 Methodology

Through a multifaceted approach to research, this paper systematically investigates the potential of data-driven design in
product development. By combining theoretical exploration with practical insights and validation, the research not only
underscores the importance of data-driven methodologies but also provides a structured approach to implementing these
strategies in industry settings. The subsequent sections will delve deeper into the results and discussions, providing a
detailed exposition of how data-driven design can lead to enhanced innovation and efficiency in product development.

The research commenced with a comprehensive literature review to establish a foundational understanding of the key
domains relevant to our study: data-driven design and systems engineering. This preliminary review aimed to identify
existing theories, methodologies, and gaps within the field, facilitating the formulation of a comprehensive research
framework. The domains were explored through various academic databases and journals, with the intent to gather a broad
spectrum of perspectives and methodologies.

Literature collection Literature analysis and framework development Evaluation
e e N
Preliminary Systematic . Classification of Development of the Application of
. . . In-depth analysis ; ) SN
screening of related literature review =P use-cases along generic logic and findings in a
of 12 use-cases o N
work (SLR) ) L lifecycle phases ) self-assessment case-study
1 3 ( '
Guiding search question: What are the use-cases in data-driven SLR-results:
design for product development? 3.644 papers
Exemplary search string: TITLE-ABS-KEY (Use-Case OR Case- Full-paper
Study OR Application OR Enterprise OR SME OR Software OR | reviews:
industry OR practitioner AND data-driven OR data-based OR 42 papers
knowledge-* OR information-* OR Systems-Engineering) Use-cases:
Publication type: Conference papers 40 cases
Database and timeline: Published by the Design Society (2010-2024) L )

Figure 1. Research procedure

Following the preliminary review, a more focused systematic literature review was conducted. The central guiding
question, which remains specifically articulated to address the overarching RQ of this paper, directed this review phase.
The selection of literature was governed by clearly defined criteria as depicted in Table 1, ensuring the relevance and
quality of the sources. To handle the extensive body of literature, a multistage analysis approach was employed. Initially,
an automated Al-based screening tool (Pital AI) was used to filter through the publications based on predefined keywords
and relevance to the topics. Subsequent to this automated screening, manual analysis by the authors was conducted to
ensure the nuanced aspects of data-driven applications were adequately captured. This dual-layered screening process
allowed for a comprehensive and thorough exploration of the literature.

The identified use cases were meticulously analyzed and categorized based on various criteria. These criteria, while
specific to the needs and context of the research, typically encompass factors such as the stage of product development
they impact, the type of data utilized, and the action they aim at. The classification was done according to the stages of the
product lifecycle, adhering to established models in the field. For such structuring, a universal framework is essential.

The lifecycle model serves this purpose well, guiding practitioners on the relevance and timing of data-driven applications
at each stage of the lifecycle. This understanding forms the basis for initiating these applications. Nevertheless, numerous
lifecycle models exist, detailing the phases that products or services undergo. It is crucial to adopt a model that holds
general validity across various industries to ensure the broad applicability of the findings. Consequently, it becomes
necessary to consolidate existing models. Qureshi et al. (2014) conducted an analysis of 64 lifecycle and development
models to identify universally accepted phases in product development, leading to the proposal of a meta lifecycle model.
This meta model aligns with well-established development models for CPS development or smart service design (cf.
Peruzzini and Wiesner, 2020; DIN SPEC 33453, 2019; VDI/VDE 2206, 2021). Drawing from the work of Qureshi et al.
(2014), we adopt a transdisciplinary lifecycle model with five phases:

Phase 1 - Planning: This initial phase begins with strategic planning, where market analysis and forecasting are conducted

to identify potential customers and their needs. This insight informs the business case definition and design. Following
this, operational planning takes place, which includes design coordination and continuous requirements management.
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Phase 2 - Development: The development phase starts with the generation of initial realization ideas during the conceptual
design stage, which are then refined in the embodiment design phase. The process leads to the detailed design stage, where
the solution is finalized. Production planning is integrated into this phase to allow for a seamless transition from product
development to production. Clarifying this transition is crucial to avoid any confusion regarding the categorization of data-
driven applications linked to work planning. Concurrently, if relevant, the development of associated services should align
with the product to ensure integrated design.

Phase 3 - Production: This phase transitions development concepts into tangible products or services. It starts with
procurement to gather all necessary inputs, followed by the manufacturing and assembly of components. Systems
integration is a pivotal step, ensuring that the combined hardware, software, and service components function reliably and
meet targeted specifications.

Phase 4 - Operations: Once the product or service is produced, it moves into operation. After sales and distribution,
installation and initial configurations set the stage for actual usage. During this phase, ongoing services such as support,
training, maintenance, and repairs are provided to enhance the user experience.

Phase 5 - End of Life: The lifecycle concludes with the retirement of the product and service. This phase focuses on
various strategies for reusing, recycling, and recovering, commonly known as the "R-Strategies." More detailed
information on these strategies can be found in the research literature, for example, Kirchherr et al., (2017).

Based on the comprehensive insights gathered through literature and case studies, an industry-oriented guiding framework
was developed. This generic logic serves multiple purposes: it acts as a self-assessment for companies to gauge their
current utilization of data-driven design, and it aids in structuring the application of data-driven techniques within their
design processes. The development of this logic was informed by both the academic and practical findings of the study,
ensuring its relevance and applicability in real-world settings.

Finally, to validate the research findings, they were tested through a practical application in a case study. This approach
was designed to evaluate the effectiveness of data-driven design methodologies in improving product development
processes. In this case study, we utilized the generic logic to model a real-world application (Decent Espresso DEI Pro),
creating a data-driven use case around the operation of an espresso machine. By gathering and analyzing real-time
operational data from the espresso machine, we were able to transform this data into actionable knowledge regarding its
use by consumers. This transformation process facilitated the derivation of clear, actionable steps that could be
implemented in the product development cycle. The findings from this case study not only confirmed the results of our
research but also enriched them by integrating industry insights. Feedback from this practical application was integrated
back into the research, enhancing the overall conclusions and providing a robust validation of the data-driven design
methodologies employed.

3 Findings

3.1 Analysis of data-driven use-cases

Our literature analysis identified 40 potential use cases, out of which 12 were selected due to their pivotal roles in product
lifecycle stages, as depicted in Figure 2. These use cases were meticulously chosen based on criteria, such as their
representativeness, detailed descriptions, and the diversity of data types used for implementation. Each use case
exemplifies the integration of various data sources, demonstrating their practical applicability across different stages of
the product development process.

The primary focus of this study is to extract actionable insights that help in refining data-driven product development
strategies. A key aspect of our analysis was to highlight the specific actions driven by the underlying data within each use
case. This approach does not only clarifies the functional role of data in enhancing product development but also
strengthens the understanding of how data can be strategically used to drive innovation and efficiency. Additionally, we
adopted a classification system for the data based on its source of origin. This classification helps in understanding the
dynamics and context of data generation, which is crucial for ensuring the reliability and relevance of the data in practical
applications. By emphasizing the origin and context of the data, we aim to provide a more nuanced understanding of how
different data types can be optimally utilized throughout various phases of the product lifecycle. This classification further
facilitates the systematic exploration of data potentials and limitations in the context of product development.

The use cases depicted in Figure 2 illustrate a diverse array of data generated at various stages of the product lifecycle,
each tailored to specific developmental phases and operational needs. During the planning phase, a multifaceted
assortment of data sources is employed, including controlling data, PLC data, product configurations, sales data, insights
from market trends, patent databases, and expert data. This rich blend of data supports early-stage decisions and strategic
planning. In the development phase, the focus shifts to leveraging existing designs, sensor data from operational
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equipment, simulation outputs, and experimental data. These data types are crucial for refining product designs and
enhancing functionality through iterative testing and simulation. Production-oriented use cases predominantly rely on
manufacturing data and product sensor data, which are vital for optimizing production processes and ensuring product
quality. During the operation phase, there is an opportunity to validate customer requirements, analyze user-generated
content, and monitor the overall system performance. This phase is critical for ongoing support and adaptation of the
product based on real-world usage and feedback.

Data-driven design represents applications where decision-making in design and development is mainly guided by data
analytics. These comprehensive data sources foster a variety of data-driven use cases, such as the creation of digital twins,
automation in design processes, identification of customer needs, and extensive market or patent screenings. Each use case
leverages data to transform insights into actionable strategies and innovations, thus enhancing product value and
operational efficiency.

[ Planning [Development ][ Production ][ Operation leld

Use case [Reference] J y life
. . I : IS ’ : :
Automated quIgn selection Controllingdata [ Existing motor Production data Customer
and generation [1] & ) designs requirements
e : e : I
Digital twins of smart products [2] PLC data,
.M Sensor data
product configuration | )
’ - e e
Using data and analytics to Expert-generated data, | | Sensors, expert- User-generated
inform design and development in-/external sources | generated data | content
of'new products and services [3] ! ! ﬂ ;
e
Facilitate the design of heating | | Experiment, . _Data related to the application,
. s . Sales data . . . . T
panels with specific properties ) simulation data ) assignment to the PLC phase in
using additive manufacturing [4] | _ : : which the data is generated
Classification of mechanical Geometry files, simulation reports, and data-
components using deep learning [5] bases (information about mech. components) )
e . s . |
Develop new generations of a Manufacturing Usage data, monitoring,
product based on the life cycle data diagnostic parameters |
data of previous generations [6] g p :
Identify customers' needs [7] Simulation, test bench, Use-phase
material data ) data
e
Decision-making and Market trends Pr oc_luctper f(;r n:ialilcek
product development [8] ) metrics, user feedback |
Patel_lt datato devel(_)p design Patent databases
theories, methodologies, tools, )
and strategies [9] : g
Guide and drive decisions and PLC data, social Customer
applications in product media, transaction datal preference data
development process [ 10] :
Facilitate combinational Textual data from
creativity in design [11] various domains
-
Modeling and simulation of Measurement data of
powertrain components [12] prior system generation)
[1] Tuchsen et al., 2018; [2] Eickhoff et al., 2022; [3] Lee and Ahmed-Kristensen, 2023; [4] Hilbig et al., 2022; [5] Bickel et al., 2022; [6] Mozgova et al., 2018;
[7] Briard etal., 2021; [8] Tharma et al., 2018; [9] Jiang et al., 2022; [10] Johnson et al., 2023; [11] Chen et al., 2018; [12] Bleisinger et al., 2022

Figure 2. Selected data-driven use cases and their collected data along the product lifecycle

3.2 Logic for the deployment of data driven design

Despite the diverse nature of the depicted use cases, a generic logic in their emergence and transformation processes can
be observed upon closer inspection. This is achieved by applying the principles of North's data-knowledge staircase (North
and Kumta, 2018), which illustrates the step-by-step transformation of raw data into actionable knowledge, thereby
showcasing the potential of data science and artificial intelligence in practical applications.
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We have chosen five distinctive use cases that are both well-described and also provide a rich data-set to demonstrate the
overall similarities among them. This same reasoning can be applied to the other seven use cases, and it remains valid.
However, due to spatial constraints, we forgo their depiction. By mapping the data-driven use cases onto the knowledge
staircase (Figure 3), it becomes evident that the use-cases share similarities. Each process begins with raw data. This data
is then processed through various methods, including machine learning techniques, to produce structured data sets that
yield insights. These insights become knowledge when augmented with context, experience, or foresight, typically through
the development of models or systems, which may include Al technologies. Consequently, this knowledge is embedded
within systems, which can either assist humans in tasks or, in the case of Al, handle tasks autonomously.

4
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Figure 3. Use-case mapping and logic for utilizing DDD
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The similarities across these five use cases are underscored by referencing established models from academic literature.
For example, aligning with the Data lifecycle framework of ISO/IEC 8183:2023, this schema encompasses stages from
the initial conception of ideas and business requirements through to data processing phases such as data planning,
acquisition, preparation, model building, system deployment, operation, and ultimately, system or data decommissioning.
These stages are subjected to continuous validation and verification to ensure the efficiency of both the model and the
system. In a simplified representation, Figure 3 traces these processes via an Al pathway marked in orange.

According to Gadepally et al. (2018), who explored functional relationships in Al systems and emphasized Human-
Machine teaming, critical phases like model building, system deployment, and operation are redefined in Figure 3. With
the evolution of Al technologies, system deployment could lead to fully automated tasks, including decision-making
processes. The role of human oversight in the development and utilization of Al systems is crucial, as it demands specific
Al skills and resources. These aspects of Al system development are further elaborated in ISO/IEC 22989, which not only
supports the data lifecycle framework but also expands on other elements of the comprehensive Al system lifecycle
relevant to DDD. If an Al system is not involved, the machine's role in data processing within the knowledge staircase is
limited to transforming data into information or knowledge. In this context, human intervention is necessary to further
process and apply the output in practical activities, as illustrated by the "Data Science Path" shown in blue in Figure 3.

It is noteworthy to mention that this approach aligns well with international standards, such as those outlined by ISO/IEC.
A comparative analysis with these standards indicates a strong correlation with the data lifecycle models employed in
machine learning, which validates the robustness and applicability of our data-handling methodologies. Such alignment
does not only confirm the efficiency of our approaches but also broadens the interoperability of our data-driven solutions
across various industrial and technological platforms.

Building on these insights, we derived several key questions that can guide and enhance the implementation of use cases
throughout the development process. These questions, which aim to streamline the adoption and optimization of DDD
strategies, are discussed in detail in the subsequent chapter. This structured inquiry not only deepens our understanding of
data-driven applications but also aids in the strategic implementation of Al-enhanced processes within industry
frameworks.

3.3 Status quo assessment for deploying DDD

This section presents a method to evaluate the preparedness of these use cases for business implementation. To facilitate
this assessment, specific questions have been outlined in Table 1, distributed across seven distinct categories. These
questions not only assess readiness, but also highlight areas that require attention to facilitate use case implementation.

The questions are based on the data lifecycle framework outlined in ISO/IEC 8183 and the fundamental requirements for
the use of artificial intelligence as described in ISO/IEC 5259. In Table 1, the "References" column indicates the
applicability of each question to the use cases discussed in Sections 3.1 and 3.2. Initially, questions were developed based
on insights gathered from the analyzed use cases. Similar questions were then grouped according to the specific
perspectives they addressed. Subsequently, these clusters were compared with existing literature and guidelines,
particularly ISO/IEC 8183 and ISO/IEC 5259. These standards provide the criteria for focusing the assessment.
Additionally, the self-assessment process was reviewed by the authors and refined based on insights gained from industry
projects.

Table 1. Guiding questions for the assessment of DDD deployment

Category Questions [references]
Data availability & | Is the necessary data readily available for analysis? [1,2,3,4,5,6,7,8]
data quality Is the quality, accuracy, and completeness of the data verified? [1,2,3.,4,5,6,9,10]

Has scalability for the introduced use case been part of the considerations? [2,5]

Which measures ensure compliant and secure data handling? [10]

How is access management achieved? [10]

Are data governance policies and procedures established?

Is compliance with privacy regulations ensured (e.g., GDPR, CCPA)?

Are all relevant stakeholders (IT, market research, etc.) included in discussions about the use

Scalability, security,
and compliance

Stakeholder
engagement and case? [3.10]
ingfrgs tructure Is additional hardware infrastructure required? [4,5,9,11]
Are additional systems required? [2,5,7,9]
Are relevant metrics and key performance indicators (KPIs) for evaluating the success of
Performance

these use cases defined? [11,12]
How will the impact on engineering processes caused by the use case be continuously
measured? [5,6,11]

metrics and impact
measurement (KPI):
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How will the use case integrate with existing engineering workflows and systems?
[2,5,6,9,11]
Integration and risk | What are potential disruptions during implementation? What are the risks associated with
mitigation implementing the use case? [11]

How will continuous learning and adaptation of the use case be ensured? [2,5]
How will user feedback and acceptance be tracked? [8,11]
Organizational Was a specific user interaction concept specified and evaluated? [1,9]

readiness What efforts are necessary to qualify employees? [2,4,7,8,9]
Are problems to be solved as well as the approach, which is in scope of the use case well
defined? Have requirements been created to further detail the use case? [6,7,8,9,12]
How is the data-driven use case linked to the business and enterprise strategy? [5,9]
References: [1] Mozgova et al., 2018; [2] Jiang et al., 2022; [3] Bleisinger et al., 2022; [4] Chen et al., 2018; [5] Lee and Ahmed-
Kristensen, 2023; [6] Hilbig et al., 2022; [7] Bickel et al., 2022; [8] Eickhoff et al., 2022; [9] Briard et al., 2021; [10] Tharma et
al., 2018; [11] Johnson et al., 2023; [12] Tiichsen et al., 2018

Strategy and
function

The information in Table 1 highlights that data availability and data quality are critically important for the use cases
discussed. It also shows that integrating these use cases into existing engineering workflows and the capability to monitor
efficiency are key to their success. Additionally, clearly defining the problem that needs resolution is essential for devising
a data-driven strategy to support development. However, the aspects of organizational and security-aspects, like
establishing robust data governance, have not been adequately emphasized. In industrial settings, considerations such as
security, compliance, and governance are fundamental for the successful implementation of a use case. These elements
are also considered in our assessment outlined above.

4 Case-Study

To demonstrate the effectiveness of the support tools introduced, they were applied in a case study involving a smart
espresso machine, specifically to detect user operating errors. The Decent Espresso DEI Pro machine, controlled by a
user via a tablet interface, allows for full customization of the espresso extraction process in terms of temperature, pressure,
and water flow over time. For easier use, these parameter settings can be saved as different extraction profiles. To make
an espresso, users grind espresso beans into a portafilter, tamp the ground espresso, insert the portafilter into the machine,
and start the extraction. The machine, equipped with separate pumps for hot and cold water, adjusts the water to the desired
temperature via a mixing manifold before it flows through the espresso in the portafilter. The machine contains several
sensors that monitor and record temperature, pressure, and water flow data, which are then stored for analysis.

In this case study, the objective was to identify potential user errors during operation to identify areas for product
improvements and ideas for new accessory products. Following the framework outlined in Figure 3, data planning started
by identifying available data: in this case, operational data collected from sensors due to the specific relevance of objective
data. This data from one machine located in an office kitchen used by approximately 60 users, provides a representative
sample of diverse user interactions, allowing for broad conclusions from the analysis. Other data like online product
reviews or service requests were not considered due to their subjectivity and potential inaccuracy in reflecting user errors.

The sensor data, along with the user-defined extraction profiles, are displayed in real-time on the tablet and recorded in a
structured text file (called espresso “shot file), which logs parameters such as pressure at various timestamps as illustrated
in Figure 4. These time steps refer to the values of the parameters, here pressure. For example, after 0.539 seconds, the
pressure has reached 0.37 bar. In addition, the shot file stores the pre-set extraction profile chosen by the user. To make
further use of the shot file data, it is stored and visualized using a simple proof-of-concept workflow. The shot files are
then transferred via OneDrive to a file converter that transforms them into JSON format for easy import into Excel. From
Excel, the data is visualized using Power BI, which displays the changes in parameters over time for each espresso
extraction. This setup also facilitates further analysis, such as the frequency of specific profiles used over a certain period.

Since the data is stored, all previous espresso shots can be analyzed. To identify operator errors, a database was created to
correlate potential errors with temperature, flow, and pressure graphs. To gain an understanding of how potential user
errors would reflect in the recorded data, benchmark data was created: A series of controlled experiments was conducted
to simulate every potential operating error identified through a root-cause analysis, such as issues with grind size, tamping
pressure and angle, portafilter attachment, and cleanliness of machine parts. Each error was induced separately to allow
for clear differentiation in the data. The experiments were limited to one preset profile to reduce variation and maximize
the relevance of findings to the most commonly used settings. Since the beans, water, and room conditions remained
unchanged, non-user-defined variables were minimized.

The data analysis revealed that the graphs of errors caused by very coarse or very fine grinds were distinctly differentiable

in the flow rate data. Specifically, a very fine grind resulted in almost no water flow due to overly compacted espresso
grounds, whereas a very coarse grind allowed too much flow due to insufficient resistance. This is visualized in Figure 4
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by the section of reference data: the top graph (too coarse) and the bottom graph (too fine) are clearly distinguishable. This
data enabled the identification of incorrect grinder settings directly from historical data, where approximately 28% of all
shots were identified with a too-coarse grind and 8% with a too-fine grind. Altogether, this represented over a third of all
shots made with incorrect grinder settings, providing crucial insights into the most common operational errors.
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Figure 4. Excerpt from the case study

Looking at the future implications for product design and applying the knowledge acquired in accordance with the
described knowledge staircase, a promising product improvement would be to assist customers in preventing operational
errors due to incorrect grinder settings. This improvement necessitates a system where feedback on each espresso shot is
analyzed to potentially adjust the grinder settings. To facilitate this, each data file documenting an espresso shot must
include a value for the grinder setting to link the results of the extraction process to the grind coarseness. The assessment
of the grinder setting post-extraction could be managed in two ways: either the user is shown a comparison between a
standard example and their own shot graph on the tablet for self-evaluation, or the software analyzes the shot graph and
provides recommendations on whether and how the grinder setting should be adjusted. The necessary modifications could
be transmitted directly to the grinder for automatic adjustments, or through a notification on the tablet's user interface,
allowing the user to manually adjust the grinder. While the development of such a solution falls outside the scope of this
paper, the case study has demonstrated the significant value added through the application of data-driven tools as proposed.

5 Reflective conclusion and outlook

Data-driven design supports a bidirectional perspective on development, benefiting both the creation process and the end
value delivered to customers. The first dimension of a data-driven approach involves the identification and exploitation of
existing data sources. By assessing available data, organizations can uncover insights that were previously unknown or
inaccessible. This process involves not only tapping into existing data pools but also enhancing the ability to interpret this
data to foster informed decision-making. The derived insights enable organizations to tailor their development strategies,
ensuring they are aligned with real-time evidence and trends. Conversely, the design process might start with a predefined
objective or a specific use case in mind. In such a case, the challenge shifts to determining the necessary data requirements
to support this objective. This entails defining what data is needed, sourcing it effectively, and setting up robust
mechanisms for ongoing data acquisition and analysis. This proactive approach in establishing data sources ensures that
the design and development process is grounded in data from the outset, enhancing the accuracy and relevance of the
solutions developed.

Internally, data-driven design significantly optimizes the company’s development processes. For instance, by integrating
real-time data analytics, companies can streamline iteration cycles, thus accelerating time to market. Furthermore,
predictive analytics can be employed to anticipate and mitigate potential production flaws or bottlenecks, thereby reducing
waste and increasing operational efficiency. Externally, the application of data-driven design directly benefits customers.
By leveraging data to understand customer usage patterns and preferences, companies can develop solutions that are highly
tailored to actual user needs. Additionally, the continuous feedback loop from customer data allows for ongoing refinement
of products and services.
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This reflects in the case study presented, while illustrative, did not incorporate direct applications of Al or sophisticated
data science techniques, which limits the depth of data interaction and learning that could be demonstrated. Future case
studies should integrate these technologies to provide a more comprehensive understanding of their impact on DDD. As
DDD increasingly integrates Al, the need for specific regulatory frameworks becomes paramount. These frameworks
should guide companies not only in implementing DDD effectively but also in managing the lifecycle processes and key
events critical to successful transformation. Although extensive research is performed in this paper, it represents just a
foundational glimpse into the expansive and rapidly evolving realm of DDD. As technology, particularly in IT and Al,
advances at a rapid pace, the results and frameworks presented here may soon require updates to remain relevant and
effective. This continuous evolution underscores the transient nature of our findings and suggests that a periodic review
could be instrumental in keeping the data-driven methodologies current.

Currently, our research has predominantly focused on the early stages of product development, with minimal exploration
into the production and end-of-life phases. A targeted search for applications in Industry 4.0, as well as for strategies
related to recycling, reusing, and remanufacturing (the R strategies), could significantly enrich the findings in these later
phases. While we identified 40 use cases, only 12 use-cases are presented in detail. A thorough analysis of all 40 cases
should be conducted to strengthen the results, thereby enhance the robustness of the findings. To expand our
understanding, engaging with communities could provide a broader range of use cases and insights. In addition, our study
was generalized across a standard lifecycle model, yet product-specific lifecycle adaptations could provide deeper insights
tailored to specific industries or products. Each dimension explored within our study must reflect the broader range of
possible scenarios and not just those outlined in generic terms. The question of whether our generic approach can be
universally applied across all data types, or should be adjusted to cater to specific phases remains open. This necessitates
further investigation into how generic standards can be customized to meet the unique data- and phase-specific needs of
different projects.

In conclusion, the implementation of Data-Driven Design within business processes is intricate and multifaceted. It
requires not only a robust theoretical framework but also practical applications that evolve with technological advances.
The insights gained from this study provide an initial roadmap for organizations interested in harnessing DDD. However,
concrete, actionable strategies must be developed as part of an ongoing dialogue among data scientists, industry specialists,
and regulatory bodies to ensure that DDD can fulfill its potential in a rapidly changing technological landscape.
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