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Abstract: Project scheduling is a critical aspect across various industries that is still extensively studied. Unlike project
plans for the resource-constrained project scheduling problem, those in the multi-mode extension (MRCPSP) remain
relatively unexplored regarding project characteristics and their implications. The present study explores artificial
project plans featuring multiple modes to address this gap. The lower and upper bounds are determined for the adapted
project-related indicator groups using metaheuristic optimization as a mode selection strategy. Our approach contributes
by offering insights into the multi-mode context and characteristics influencing project scheduling and managerial
decisions.
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1 Introduction

Project scheduling has gained a vital role in various industries, with the resource-constrained project scheduling problem
(RCPSP) being extensively studied in project planning literature since the 1950s. Traditionally, this problem involves
scheduling a set of activities subject to precedence and resource constraints to optimize objectives such as minimizing
project duration. However, existing approaches often overlook the inherent flexibility in scenarios where tasks can be
executed using alternative methodologies or technologies, each mode representing a combination of different time and
resource requirements for the task. While several extensions of the RCPSP have been explored, summarized by Hartmann
and Briskorn (2022) and Habibi et al. (2018), one of the most significant variant became the multi-mode RCPSP
(MRCPSP) (Elmaghraby, 1977). Due to the high practical relevance, it has brought a significant scholarly and industrial
focus since its introduction. Despite the growing importance of MRCPSP, the literature primarily focus on efficient
algorithm development, neglecting the exploration of project characteristics, especially regarding project indicator and the
implications of the trade-offs provided by multiple modes. In this context, it is essential to have the knowledge in advance
on the impact of demands and the degree of flexibility to be able to balance between the different constraints of the projects.
Our research is thus guided by the following set of research questions (RQs):

RQ1 How is it possible to determine the lower and upper bounds of project-related indicators using exact or heuristic
methods considering multiple execution modes?

RQ:2 Which project-related indicators demonstrate the strongest relationship with project duration and resource utilization?

To answer the research questions, we explore artificial project plans incorporating multiple modes by solving the mode
assignment subproblem. We determine indicator values for both the lower and upper bounds, capturing worst- and best-
case scenarios for time- and renewable-resource demands. Our objective is to close the identified research gap by
introducing a framework to analyze multi-mode projects. This framework can extend the understanding of project
characteristics and provides insights into project time- and resource characteristics within multi-mode project settings. To
demonstrate our approach, a case study was also carried out for a real problem. The current paper is organized as follows.
In the following Section 2, we review the relevant literature and provide background of the problem. Section 3 details our
approach to mode assignment with the data sources and methodologies used and presents a practical example. Section 4
shows the computational results and the case-study, Section 5 discusses them and finally, Section 6 concludes the paper,
gives the limitations the current study, and directions for future research.

2 Literature review

The MRCPSP serves as a fundamental extension of the resource-constrained project scheduling problem (RCPSP), which
has been extensively studied in the literature. Although the MRCPSP is more practical than its single-mode counterpart,
it is also much more challenging. Researchers have developed both exact (Patterson et al., 1989; Stowinski, 1980; Talbot,
1982; Sprecher et al., 1997; Sprecher and Drexl, 1998; Speranza and Vercellis, 1993; Hartmann and Sprecher, 1996; Zhu
et al., 2006), heuristic (Lova et al., 2006; Knotts et al., 2000; Boctor, 1996b; Drexl and Gruenewald, 1993; Ozdamar and
Ulusoy, 1994; Kolisch and Drexl, 1997; Talbot, 1982; Noori and Taghizadeh, 2018; Gerhards et al., 2017), and
metaheuristic (Jozefowska et al., 2001; Boctor, 1996a; Bouleimen and Lecocq, 2003; Nonobe and Ibaraki, 2002; Zhang
et al., 2006; Ranjbar et al., 2009; Stowinski et al., 1994; Lova et al., 2009; Alcaraz et al., 2003; Hartmann, 2001; Mori and
Tseng, 1997; Ozdamar and Ulusoy, 1994; Fernandes Muritiba et al., 2018) solutions for solving the MRCPSP. Both the
RCPSP and its generalized MRCPSP are classified as NP-hard problems (Blazewicz et al., 1983; Kolisch, 1995). For an
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overview of the various exact, heuristic, and metaheuristic methods proposed to solve MRCPSP, we refer to Weglarz et
al. (2011) and Noori and Taghizadeh (2018). Peteghem and Vanhoucke (2014) present a detailed review and analysis of
heuristic methods and Changchun et al. (2018) lists further articles.

The basic RCPSP’s object is to minimize the project duration. The objective of the MRCPSP is extended by finding a
mode in addition to the start time for each activity such that the makespan is minimized and the schedule is feasible
concerning the precedence and resource constraints. The MRCPSP encompasses two primary challenges: firstly,
determining a single mode for each activity, and secondly, scheduling these activities considering constraints and further
possible attributes. In this paper, we primarily investigate the mode selection sub-problem and only give a general
overview as a background of the related scheduling sub-problem.

Exact methods often fail to find optimal solutions for large problem sizes in a reasonable time. In the discrete time/resource
trade-off problem (DTRTP), the duration of an activity varies based on the allocation of renewable resources. The
enumeration of all feasible mode combinations is practically impossible due to the huge number of possible combinations.
In contrast, metaheuristic algorithms can obtain near-optimal solutions quickly. For single-mode problems, there are
several ways to calculate the lower bounds (LB) of project duration (Boctor, 1990). In contrast, the lower bounds for the
MRCPSP are typically derived from the critical path method (CPM) (Kelley Jr and Walker, 1959), selecting the mode
with the shortest duration for each activity (Sprecher et al., 1997).

The key literature is summarized by selecting a recent study connected to the main features connected to this paper. Such
papers are Noori and Taghizadeh (2018), considering genetic algorithm of the mode-selection sub-problem. Van Eynde
and Vanhoucke (2020) consider recent time- and resource-related indicators for RCMPSP, also relevant to our study.
Hartmann and Briskorn (2022) give an overview of various alternative objectives for RCPSP, and while Stiirck and
Gerhards (2018) deals with the classical lower bounds for the MRCPSP, we consider indicators as objectives for lower
and upper bounds of the mode selection subproblem. Besikci et al. (2015) considers MRCMPSP with multiple modes,
while our study contributes to the single-project case. Lova et al. (2009) includes non-renewable resources which are not
considered in our study. Kosztyan and Szalkai (2020) also uses matrix-based representation for MRCPSP and considers
various trade-off problems, while we study the discrete time-resource trade-off problem (DTRTP).

It can be stated that various methods were proposed in the literature to tackle the MRCPSP by also solving the mode
assignment problem to convert multi-mode problem into a fixed, single-mode RCPSP. While significant attention has
been given to developing efficient algorithms for MRCPSP, there remains a notable gap in the literature regarding the
exploration of project characteristics, particularly in terms of project indicators and the implications of trade-offs inherent
in multiple modes. By addressing this gap, our study aims to provide valuable insights into these aspects of MRCPSP,
enhancing our understanding of the problem and potentially leading to more effective solutions.

To characterize projects for structural complexity, duration, slacks, and resource demands, project indicators are essential.
This information can fundamentally influence how the scheduling or resource allocation algorithm performs. Two main
groups of indicators emerge from the literature. The first group, referred to as structural indicators, encompasses metrics
related to project complexity (see, e.g., Sprecher, 1994; Davis, 1975; Mastor, 1970), which consider the topological
features of the project. The second group, known as demand indicators, includes metrics related to various domains, such
as time (Patterson 1976) and renewable resources (Patterson, 1976; Kolisch et al., 1995; Van Eynde and Vanhoucke,
2020). Quality and cost demands are represented by only a few indicators in this group.

3 Methods

3.1 Data sources and selected projects

The Boctor (Boctor, 1996b) multi-mode dataset and its subsets with 50 and 100 activities were used for our investigation.
Each subset supports one, two or four renewable resources and is used in various studies. The instances are available for
download from Boctor (2004). To process the data in a matrix-based format, we employed the parser tool of Kosztyan et
al. (2023).

3.2 Matrix-based representation

The calculation of project indicators and the proposed metaheuristic optimization for mode selection rely on a matrix-
based model. This representation is based on the DSM (Steward, 1981) utilizing DMM (Danilovic and Browning, 2007)
to extend the model for projects (Kosztyan, 2020) called the project domain matrix (PDM). It specifies two mandatory
domains: the logic domain (LD) and the time domain (TD). Additionally, it supports four supplementary domains: cost
domain (CD), quality domain (QD), nonrenewable-resources domain (ND), and renewable-resources domain (RD), each
represented as submatrices within the model structure. The model can represent all the mentioned attributes, nevertheless,
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the available data and the existing indicators primarily focuses on single projects and renewable resources, thereby we
excluded the nonrenewable resources, cost, and quality domains from the analysis as shown in Figure 1.
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Figure 1. Matrix representation of project plans

An original logic structure of a project yields an activity-on-node network, which is denoted as G = (N,cA) directed graph,
where N = {A,, ..., A,} (A is often shortened to i) is the set of nodes (i.e., tasks), and A c N x N is the set of arcs (i.e.,
dependencies). n = |N| is the number of tasks, and |4 is the number of dependencies.

LD is the mandatory domain containing the matrix representation of the logic structure of the project’s, where LD € {0,
1} nxn , for each i < n, [LD]; = 1, and for each i #j, we have (A;, A;) € A if and only if [LD];; = 1 (otherwise [LD];; =
0). TD is an n by w matrix domain (submatrix) of positive real values for task durations, where n is the number of tasks
and w is the number of completion modes. In the case of w = 1, the project plan is called single-modal, while in our case
of w> 1, the project plan is called a multimodal project plan. RD is an n by w - » domain for renewable resources of each
task, where r is the number of renewable resources. Since none of the project networks from the considered databases
contains any cycles, they can be ordered topologically, and the logic domain of the topologically ordered project networks
is an upper triangular matrix (formally, /; = [LD];; = 0 if i > j). Let us denote PDM = [LD,TD,RD] as the matrix
representation of a project plan. PDM is an »n -w (1 + ), where » is the number of tasks, w is the number of completion
modes, and r is the number of resources.

3.3 Calculating bounds

The sharp bounds for the maximum critical project length (total project time) can be calculated as follows. Let TDmin and
TDmmax denote the minimal and maximal time demands, respectively, where TDimin = ti min = Ming, ti,o € [TD;], TDimw =t
max = MaXe, ti,e € [TD] fori=1, ..., n; 0 =1, ..., w. We find the mode with the lowest and largest task duration for each
task. The vectors Vmin and vmax represent the indices of modes corresponding to the minimal and maximal values
respectively, for each task: Viin = [Omin, 1, ®min 2, - -, Ominn], SIMilarly, Vimax = [Omax, 1, Omax.2, - - -, Omax,»]. [t Worths mentioning,
that the critical project length stands out as the exception, as for other indicators, there’s no straightforward method
available to calculate the optimal lower and upper bounds.

3.4 Studied project-related indicators

Indicators describe specific properties of projects, which allows academics and practitioners to describe, classify and
compare project plans, or even map solutions to procedures (Guo et al., 2021) and to generate new benchmarks (Van
Eynde et al., 2024). As for our case, the mode selection does not have an impact on the structural indicators, the complexity
and topological indicators are only used to characterize project plans. The order strength (OS) (Mastor, 1970) and the
serial-parallel (SP) indicators (Tavares, 1999; Vanhoucke et al., 2008) are selected for this purpose. Furthermore, they can
predict the complexity of solving the RCPSP (Coelho and Vanhoucke, 2020). The rest of the indicators characterize the
project demands. There are time-related indicators, such as the maximum critical path length (MAXCPL), the mean and
variance of activity durations (XDUR and VA-DUR, respectively), the percent of activities with positive total slack
(PCTSLACK), the average total slack per activity (XSLACK), the total and average slack ratios (TOTSLACK-R and
XSLACK-R, respectively), the percent of activities with positive free slack (PCTFREESLK) and the average free slack
per activity (XFREESLK) (Patterson, 1976). There are also renewable resource-related indicators, such as the resource
factor (RF) (Kolisch et al., 1995) (i.e., the density of the resource domain RD), the percent of activities that require the
given resource type (PCTR) (Patterson, 1976), the resource use (RU) of the activities (Demeulemeester et al., 2003), the
average demand from each resource type, resource constrainedness (RC) (Patterson, 1976), resource strength (RS)
(Kolisch et al., 1995), and the following four indicators used by (Patterson, 1976), which consider the precedence relations
of the activities to describe resource needs, the utilization of each type of resource, the constrainedness of the resources,
and obstruction and underutilization of the resources. The indicators considering the strictness of the renewable resources,
such as RC, RF, RS have a significant impact on the hardness of the scheduling problem as well. The Gini coefficient
(Van Eynde and Vanhoucke, 2020) measures the inequality of renewable resource demands. We refer to Kosztyan and
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Novék (2024) for a summary of all relevant indicators and their operationalizations, adapted to the matrix-based
representation, which was also integrated for our framework.

3.5 Applied meta-heuristic algorithm

For most indicators, the process involves optimizing each project-related indicator by minimizing or maximizing their
values as objective functions. Enumerating all mode combinations is practically infeasible due to the huge number of
possible combinations. However, meta-heuristic algorithms could offer an approach to obtain near-optimal solutions and
thus a genetic algorithm (GA) is proposed to solve the underlying problem. The genetic algorithm iteratively generates
and refines potential solutions v'min (V'max), represented as individuals within a population, to minimize (maximize) the
target function. The selected modes are extracted from the submatrices of the original PDM so the indicators can be
calculated for a single-mode case. As an example, the lower bound for TD becomes an # - 1 column vector TD' = [TD];
wminis I = 1, . .., n with the optimized mode selection. Similarly, RD becomes for all p an n by 1 - r submatrix, RD' =
[RD]i,w(pp—Dtomni,i=1,....,n,p=1,...,r, =1, ...,w with optimized modes selected for each renewable resource.
Finally, the PDM becomes PDM' = [LD,TD’ ,RD’ | for which the indicator values can be calculated.

The initial population is randomly generated within the constraints, then each iteration, or generation, evaluates the fitness
of individuals based on the calculated indicator value. Individuals with higher fitness are more likely to reproduce through
crossover and mutation. Offsprings replace less fit individuals, evolving the population over generations. The best
individuals in the final generation represent approximate solutions to the optimization problem. The MATLAB
(Mathworks, 2021) Global Optimization toolbox was used to implement the genetic algorithm. The population size was
set to 100, which employs an elite count parameter, ensuring 5% of individuals advance to the next iteration. Additionally,
for the non-elite individuals, the crossover fraction is set at 80%, with the remaining 20% set for mutation. The selected
operators are scattered crossover, which combines genetic material from two parents randomly, and Gaussian mutation,
which benefits combinatorial problems by injecting minor, random alterations into solution candidates, aiding the
exploration of adjacent solution spaces. The mode indices were constrained between 1 and w, representing the lower and
upper bound vectors for the algorithm, respectively. A fixed random seed ensured reproducibility across runs. The stopping
criterion was either reaching a generation limit of 200 generations or achieving an average relative change in the best
fitness function value over generations less than or equal to the function tolerance of 1E-8. For validation purposes, we
tested various crossover and mutation functions for speed and accuracy.

3.6 Sum of ranking differences

To compare the various indicator bounds, we employed the sum of ranking differences (SRD) method (Héberger, 2010).
SRD is a general, non-parametric statistical measure commonly used to assess the similarity between ranked observations.
The test allows the comparison of different solutions through a reference by first performing a rank transformation on the
input, and then calculating and comparing the distances between the solutions and the reference. A lower (higher) SRD
value indicates a smaller (higher) difference in rankings between the indicators. We also used Spearman’s rank correlation
coefficient to validate exact (sharp bounds) with approximate indicator bounds. To calculate and visualize the SRD, we
used the rSRD package in R (Héberger, 2010).

3.7 Practical example

An example based on a real problem is shown in Figure 2, where a selection of specific test environments was desired by
an automotive supplier for their electronic brake systems project. The product can be tested with model- (MIL), software-
(SIL), hardware- (HIL) and vehicle-in-the-loop (VIL), analogous to four execution modes associated with different time
and (renewable-)resource, where substitution is possible. All test tasks need to be executed by considering precedence
relations of the logic plan represented as a design structure matrix (DSM). Data have only been aggregated and linear
scaling was applied to keep validity.

There are three resource types: developers, test engineers, and test drivers. Not all environments can be operated by all
resource types, e.g., developers can work with MIL and SIL, but not with HIL and VIL. Test engineers are familiar with
SIL and HIL but lack a license for vehicle and not familiar with MIL and SIL. Test drivers can test on HIL, and they are
the only ones who are allowed to drive the vehicle (VIL). These constraints are coded in the original model by zeroed
demands (non-executable modes), either due to incompatibility of the resource type with the task, with the test
environment, or both. Furthermore, all inefficient modes were removed, if the duration is not shorter and resource demands
are not less than the other modes of the same activity (Sprecher et al., 1997). Similarly, redundant modes having identical
demands could be removed. Resource constraints were three unit for developers, two for test engineers and one for test
drivers.
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Figure 2. Various indicators are explained on a real example where test environments are selected as execution modes

Figure 2 also illustrates selected indicators, optimized by the mode selection, to obtain lower- and upper bounds of their
values. The negative value of normalized average resource loading factor (NARLF) indicates a front-loaded resource
distribution throughout the test plan, when minimized for lower bound and a positive value for the maximized upper
bound. Gini indicator shows a rather equal distribution of work content (i.e., duration multiplied by resource demand) on
the lower bound and an inequally distributed upper bound (closer to 1). The critical project length (MAXCPL) range can
be calculated both in an exact and optimized way. As expected, for the (lower) upper bounds, tasks with (shorter) longer
duration were selected by the corresponding modes without considering resource demands. By solving the optimization
problem, the company can identify the mode selection for each task considering the desired indicator as objectives and the
consequences.

The basic idea behind ranking indicators is explained briefly for the resource-related upper bound. Normalization of
indicator values is necessary as they can have different ranges. The upper bound (UBworm) values are then sorted in
ascending order and assigned with ranks /,2,...,n, of Rankyp. Ties, e.g., on the 3™ and 4% position, can be resolved using
average ranks as (3+4)/2=3.5. The absolute values of the differences (|Diffus|) need to be calculated between these rankings
(Rankyg) and the arbitrary benchmark indicator’s rank, UTILyg. The SRD values can be calculated by the sum of these
differences (distances) for all project instances (only one in this example), similarly, for lower bounds and for the time-
related indicators. This way, not only the SRD values order the indicators (the closer is the SRD value to zero, i.e., the
closer is the ranking to the benchmark, the better is the indicator), but also groups of indicators can be recognized. The
close proximity of SRD values suggests close similarity of the indicators, whereas large distance between SRD values
realizes dissimilarity. Validation of the SRD method can be carried out using simulated random vectors for comparison
similar to permutation tests which is explained by Héberger (2010).

4 Results

Due to the limitation of the size of this paper, only selected results are shown. First, the results of the clustering done for
the projects’ demand-related indicator groups are presented. The heatmap of the lower bound values for the time-related
indicator’s group in Figure 3(a) shows a clustering, where slack-related indicators (PCTFREESLK, PCTSLACK,
TOTSLACK R, XSLACK, XFREESLK, XSLACK R), are connected to the average task duration (X-DUR). Slack
indicators representing the number of slacks (NFREESLK, NSLACK) are placed in the group of variance in task duration
(VA-DUR) with both the approximate and the exact longest critical path lengths (MAXCPL and MAXCPLexact,
respectively). Regarding upper bounds, the average task duration (X-DUR) and variance in task duration (VA-DUR) now
belong to the same cluster, while the critical paths and the number of slacks share the same cluster, like the lower bound
case.

From the resource perspective, on the lower bound at Figure 3(c), there are some indicators close within groups, such as
the different obstruction and underutilization factors (TOTOFACT, OFACT, UFACT, TOTUFACT). Indicators
considering constraints, such as XCON, TCON, RC, TOTOFACT, OFACT are close, joined by the resource use (RU) and
normalized average resource factor (NARLF). Some resource-demand related indicators (XDMND, XUTIL) are also
closely connected. Finally, a separate group emerges from RS, Gini, PCTR, UFACT and TOTUFACT indicators. On the
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upper bound of resource values, the groups show some differences in Figure 3(d). Here, NARLF, UFACT, XDMND,
PCTR are related also with Gini and XUTIL. The next group is RS, RF, RC, TCON and XCON. OFACT, TOTOFACT,
TOTUFACT, and RU are as well close to each other.
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Figure 3. Heatmaps (left) and SRD rankings (right) of the time- and resource-related indicator groups

As benchmark of the SRD analysis, we defined the MAXCPLecx,c for the time-related group, and XUTIL for the resource-
related indicator group instead of aggregated data (e.g., mean) to rank the values of the other indicators based on these
references. If an SRD value (similarity metric) overlaps with the Gaussian curve, it is not distinguishable from random
ranking. The 5% (XX1), Median (Med) and 95% (XX19) values are also indicated. Vertical axis shows relative frequencies
for random rankings. Scaled SRD values are shown.

On Figure 3(e-g), the indicators marked by the vertical line that are closer to the left of the horizontal axis, has a better
rank compared to the reference. For the time related indicators in Figure 3(e), it is visible that the slack group with the
order of highest similarity to lower are: NSLACK, NFREESLK, XSLACK, XFREESLK, PCTSLACK. These indicators
have the closest relationship with MAXCPLexact. The variance in duration (VA-DUR) also contributes, while the others
remain indifferent. For the upper bound of time-related values of Figure 3(f), only the NSLACK and NFREESLK are
close to the selected reference MAXCPLexact. Interestingly, XSLACK R is on the right side of the Gaussian curve, which
means that it is dissimilar to the reference exhibiting a reversed SRD ranking.

From the resource aspect, on the lower bound, (Figure 3(g)) XDMND, RC, RU, XCON, TCON, TOTOFACT, OFACT,
RS, NARLF, RF and TOTUFACT is the relevant order of similarity from highest to lowest, compared to XUTIL as
reference. Many indicators remain indifferent, while Gini, UFACT and RS are considered dissimilar. On the resource
upper bound (Figure 3(h)), Gini, RF, OFACT, NARLF, XCON, RS, RC, TOTOFACT stands out, as others are indifferent.
PCTR and UFACT are the least similar indicators. To compare the approximate MAXCPLip and the exact, calculated
MAXCPL®™ 5, the correlation was also checked, finding a significant Kendall’s tau coefficient of 1 = 0.9916, and a p-
value of p <.0001 between the results. Similarly, MAXCPLug and MAXCPL®**'y5 shows a T = 0.9968 with a p-value of
p < .0001 which demonstrates a reliable approximation of the indicator values through the optimization of the selected
genetic algorithm.

4.1 Case study

To demonstrate our approach and to validate the findings, we selected a single case study of an international automotive
R&D company developing software for electronic brake systems. The case satisfied the conditions for our method. To
improve projects, high-management plans to extend their existing agile approach with emerging techniques, such as pair-
and mob programming, only briefly introduced here (for details, see, e.g., Stdhl and Mértensson, 2021). Pair programming
involves two people working together on one workstation, enhancing collaboration in real-time. Mob programming
extends this to a bigger team that works on the same task, promoting collective problem-solving.

Based on the data collected from company experts, and shown in Figure 5, the project template contains 3 subprojects
with optional features (clusters are marked with dashed line) which provides the possibility to analyze a total of 2°=8
project variants.
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Figure 5. Different Agile work practices in a software development project

The tasks with their requirements for each 3 modes and logical dependencies are specified in Figure 5. Resource constraints
for the 2 renewable resource types were 7 developers and 5 testers. The assumption is, that compared to the basic agile
execution, the addition of pair programming techniques brings advantages for programming, testing, and reviews, and
adds overhead to planning and deployment. Mob programming tends to be more effective for planning, reviews, and
problem-solving tasks, but less efficient in development.

The case study aims to extend RQ, with an additional sub-question: what combination of agile technique(s) results in the
lowest and highest constrainedness of resources in the project? The SRD rankings were calculated for all projects shown
in Figure 6(a-d). Due to the small sample size, clustering was not feasible, but some patterns are visible in the distance
matrices (lower values indicate closer proximity) shown in Figure 6(e-h).
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Figure 6. Indicator rankings (left) and distance matrices (right) of the software development case study

For time, PCTSLACK is the most dissimilar for the upper bound and cannot be distinguished at the lower bound from the
reference. Task duration measures are closer to reference, but not conclusive for the upper bound. Some slack indicators,
such as XSLACK, XSLACK-R, TOTSLACK-R also cannot be distinguished from random samples for any bounds.
Interestingly, Gini stands out as the most similar measure, while UFACT and XCON as the most dissimilar measure for
resource utilization (UTIL) benchmark. RF, RU, PCTR are dissimilar measures on the lower bound.

For both of time-related bounds, a group of slack-related indicators emerges. From a resource point of view, Gini, RS and
NARLF are the closest for the lower bound. RU, RF, PCTR are generally close to each other. Finally, the selected modes,
i.e., the agile practices selected for each task could be identified for the lower- and upper bound of the resource
constrainedness (RC), using the modes solution vector. For the lower bound, the goal was to have less constrained
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resources, which resulted in a mixture of techniques, mob- and pair programming selected mostly for areas of expected
excellence. On the upper bound, both mob and pair programming appeared overused, highly constraining the resources.

5 Discussion

The clusters formed by the indicators can be better understood and explained by examining their specific purpose and
details. For instance, the resource indicators that are considering constraints, are grouped. The case study has revealed the
importance of setting specific resource thresholds for each project, from a practical perspective. When the same thresholds
were applied for the different project variants (e.g., because the same project team was considered during planning), these
indicators exhibited a higher similarity with each other. Another group was emerging of similar resource indicators that
are based on an earliest schedule. Similarly, slack indicators tend to form a group depending on their calculation method
(ratio or count). These groupings can be considered in project planning, e.g., by assigning weights. In terms of ranking,
the critical path length of the project shows similarities with and heavily influenced by slack values for both lower and
upper bound. These results are also in line with the findings of our case study. The indicators regarding task durations
were not found as conclusive as expected. Based on the results, emphasizing slack in planning-related decisions regarding
total project duration seems crucial. Regarding resources, the lower bound of average resource utilization is particularly
influenced by factors like average demand and resource constraints, while the Gini index (inequalities in the work content)
and the resource factor are crucial for both bound considerations in project planning. The case study emphasized the
dissimilarity of the under-utilization factor for both bounds.

6 Summary and conclusion

In this research, we investigated the impact of the decisions made in the mode selection process, related to the
characteristics of the indicators considering alternative execution modes. This study gives insight into how the different
activity execution modes impact the project characteristics represented by project indicators. It aids managerial decisions
for project planning considering time and resources. We answered RQ; by showing that the mode selection procedure of
the applied genetic algorithm has provided good approximations for the project-related indicator bounds that are calculated
by the exact method. RQ; is answered with the result that the slack-related indicators show the strongest relationship with
the project duration, i.e., the length of the longest critical path, which should be the focus of project planning decisions,
especially for efficient buffer management to prevent project delays. The applied SRD method can consistently capture
more complex, non-linear relationships as well. A recently applied resource indicator, the Gini coefficient turned out as
an important measure for considering average resource utilization of project plans for all results. Our case study of an
automotive company extended the findings of the artificial project plans and demonstrated the mode selection process to
improve an agile software development project. Understanding the characteristics of projects provides a foundation for
making informed decisions based on predictable and consistent indicators.

Our study suggests several promising areas for further research. These include the development and application of
additional indicators as well as exploring a real project database (not yet available) that supports multiple modes. We also
propose investigating the impact of mode assignment on indicators using stochastic frameworks and sensitivity analysis.
Furthermore, there is a potential to explore the feasibility and performance of (multi-objective) scheduling using various
indicators as objective functions.
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